Bridging Discrete and Backpropagation: Straight-Through and Beyond

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, Jianfeng Gao

Microsoft Research

Deep Learning and Gradient Descent

Back-propagation and Chain's Rule

For differentiable functions, back-propagation allows the gradient to be computed efficiently.

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial D} \cdot \frac{\partial D}{\partial P} \cdot \frac{\partial P}{\partial \theta}$$

Back-propagation and Discrete Variables

For <u>applications involving discrete variables</u>, back-propagation can not be directly applied as before.

∂f	∂f	Q.D	∂P
$\overline{\partial \theta}$ –	∂D	ØB	$\partial \theta$

Back-propagation and Discrete Variables

This challenge impacts various applications, including Mixture-of-Experts, Differentiable Neural Architecture Search, Discrete Variational Autoencoder.

Bridge Back-propagation and Discrete

6

Bridge Back-propagation and Discrete

We propose ReinMax to <u>bridge discrete and back-propagation</u>. It achieves second-order accuracy with little computation overheads.

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial D} \cdot \underbrace{\partial f}_{\partial P} \cdot \frac{\partial P}{\partial \theta}$$
$$\frac{\partial f}{\partial \theta} \approx \frac{\partial f}{\partial D} \cdot \Lambda \cdot \frac{\partial P}{\partial \theta}$$

Outline

- Background
- Gradient Approximation: a Numerical ODE Perspective
 - How Straight-Through Works?
 - How to Make it Better?
- Discussions and Experiments

Simplified Scenario as Problem Setting

The Gradient

$$\min_{\theta} E_{D \sim P_{\theta}}[f(D)] = \min_{\theta} \sum_{D} f(D) \cdot P_{\theta}(D) \qquad \nabla = \sum_{D} f(D) \cdot \frac{\partial P_{\theta}(D)}{\partial \theta} = E_{D \sim P_{\theta}} \left[\frac{f(D)}{P_{\theta}(D)} \frac{\partial P_{\theta}(D)}{\partial \theta} \right]$$
This is known as the REINFORCE algorithm

Although REINFORCE provides unbiased gradient estimations, in practice, it is usually hard to apply REINFORCE, as it suffers from a large variance

Straight-Through Gradient Approximation

In practice, a commonly used technique is called straight-through. It treats non-differentiable function (e.g., the sampling of D) <u>as if it is an identity</u> <u>function in gradient computation</u>.

Straight-Through Gumbel-Softmax

- A more popular family of Straight-Through estimators is Straight-Through Gumbel-Softmax (STGS)
- Gumbel-Softmax Trick—the sampling of D (D ~ P_{θ}) can be reparameterized as zero-temperature limit:

 $D = \lim_{\tau \to 0} \operatorname{softmax}_{\tau}(\theta + G) \quad \text{where } G_i \text{ are i.i.d. and } G_i \sim \operatorname{Gumbel}(0, 1)$

12

• STGS treats the zero-temperature limit as identity function when compute gradients.

How ST Works?

13

Outline

- Background
- Gradient Approximation: a Numerical ODE Perspective
 - How Straight-Through Works?
 - How to Make it Better?
- Discussions and Experiments

How Straight-Through Works?

Theorem 1: $E[\widehat{\nabla}_{ST}]$ is a first-order approximation of ∇ , where $\widehat{\nabla}_{ST} = \frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}$

Discussions on Theorem 1

- In Tokui & Sato (2017), the authors positioned $E[\widehat{\nabla}_{ST}]$ as a first-order approximation, but their analyses are exclusively rooted in the properties of Bernoulli variables:
 - Consider $D \in \{I_1, I_2\}$, we have: $\nabla = (f(I_1) f(I_2)) \cdot \frac{\partial P_{\theta}(I_2)}{\partial \theta} = (f(I_2) f(I_1)) \cdot \frac{\partial P_{\theta}(I_1)}{\partial \theta}$
- The analyses in Gregor et al. (2014) and Pervez et al. (2020) are applicable to multinomial variables, but resort to adding a term, i.e., $E\left[\frac{1}{n\cdot\pi_D}\widehat{\nabla}_{ST}\right]$ is positioned as a first-order approximation instead.
 - We believe $\frac{1}{n \cdot \pi_D} \widehat{\nabla}_{ST}$ induces unwanted instability (please check our paper for more details).
- Theorem 1 is the first that formally established that $D \leftarrow P_{\theta}(D) P_{\theta}(D)$. detach() + D works as a first-order approximation in the multinomial case.

How Straight-Through Works?

Theorem 1: $E[\widehat{\nabla}_{ST}]$ is a first-order approximation of ∇ , where $\widehat{\nabla}_{ST} = \frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}$

$$\nabla = \sum_{D} f(D) \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}$$

$$\nabla = \sum_{i} \sum_{j} P_{\theta}(I_{j}) \cdot (f(I_{i}) - f(I_{j})) \cdot \frac{\partial P_{\theta}(I_{i})}{\partial \theta}$$

$$E[\widehat{\nabla}_{ST}] = E[\frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}]$$

Subtract E[f(D)] as the baseline

Approximate
$$f(I_i) - f(I_j)$$

as $\frac{\partial f(I_j)}{\partial I_j}(I_i - I_j)$

How Straight-Through Works?

- We show that Straight-Through works as $f(\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}) f(\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}) \approx f'(\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}) \cdot (\begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix})$
- This approximation has been known as the Euler's method, a first-order numerical ODE solver

How to Improve Straight-Through?

• Approximate $f(\bigcirc \bigcirc \bigcirc) - f(\bigcirc \bigcirc \bigcirc)$ better

Euler's method

From Euler to Heun

While Euler's method achieves first-order accuracy, Heun's method achieves *second-order accuracy without requiring second-order derivatives*.

ReinMax

We propose ReinMax to <u>bridge discrete and back-propagation</u>. It achieves second-order accuracy with little computation overheads.

 $\frac{\partial a}{\partial x} = \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial c} \cdot \frac{\partial c}{\partial d} \cdot \frac{\partial f}{\partial c} \cdot \frac{\partial f}{\partial f} \cdot \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}$ $\frac{\partial a}{\partial x} \approx \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial c} \cdot \frac{\partial c}{\partial d} \cdot \Lambda \cdot \frac{\partial d}{\partial f} \cdot \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}$

Algorithm 1: ST.	Algorithm 2: ReinMax.
Input: θ : softmax input, τ : temperature.	Input: θ : softmax input, τ : temperature.
Output: <i>D</i> : one-hot samples.	Output: <i>D</i> : one-hot samples.
1 $\pi_0 \leftarrow \operatorname{softmax}(\boldsymbol{\theta})$	1 $\pi_0 \leftarrow \operatorname{softmax}(\boldsymbol{\theta})$
2 $D \leftarrow \text{sample_one_hot}(\pi_0)$	2 $D \leftarrow \text{sample_one_hot}(\pi_0)$
3 $\pi_1 \leftarrow \operatorname{softmax}_{\tau}(\theta)$ /* stop_gradient(\cdot) duplicates its input and detaches it from backpropagation. */ 4 $D \leftarrow \pi_1 - \operatorname{stop}_{\operatorname{gradient}}(\pi_1) + D$ 5 return D	3 $\pi_1 \leftarrow \frac{D + \operatorname{softmax}_{\tau}(\theta)}{2}$ 4 $\pi_1 \leftarrow \operatorname{softmax}(\operatorname{stop_gradient}(\ln(\pi_1) - \theta) + \theta)$ 5 $\pi_2 \leftarrow 2 \cdot \pi_1 - \frac{1}{2} \cdot \pi_0$ 6 $D \leftarrow \pi_2 - \operatorname{stop_gradient}(\pi_2) + D$ 7 return D

pip install reinmax

from reinmax import reinmax

• • •

- y_hard = one_hot_multinomial(logits.softmax())
- y_soft_tau = (logits/tau).softmax()
- y_hard = y_soft_tau y_soft_tau.detach() + y_hard

```
+ y_hard, y_soft = reinmax(logits, tau)
```

Outline

- Background
- Gradient Approximation: a Numerical ODE Perspective
- Discussions and Experiments

Discussions and Experiments

- Discussions and Experiments
 - Effectiveness of ReinMax
 - Comparisons with REINFORCE-style algorithms
 - Impact of Temperature Scaling
 - Downstream Applications
 - Efficiency

Effectiveness of ReinMax

Major Baselines

- 1. Straight-Through Gumbel-Softmax (STGS)
- 2. Straight-Through (ST)
- 3. Rao-Blackwellizing Gumbel-Softmax Straight-Through (GR-MCK; ICLR'21)
- 4. Gapped Straight-Through (GST-1.0; ICML'22)

Polynomial Programming

 $\min_{\theta} E_{D \sim P_{\theta}} \frac{|D-c|_p^p}{128} \text{ where } \theta \in R^{128 \times 2}, D \in \{0, 1\}^{128}, \text{ and } D_i \stackrel{\text{iid}}{\sim} \operatorname{softmax}(\theta_i)$

ListOps and MNIST-VAE

Table 1: Performance on ListOps.							
STGS GR-MCK GST-1.0 ST ReinMax							
Valid Accuracy	66.95±3.05	66.53±0.58	$66.28 {\pm} 0.52$	66.51±0.76	67.65±1.25		
Test Accuracy	66.26 ± 0.48	68.07±1.18					

Table 2: Training –ELBO on MNIST ($N \times M$ refers to N categorical dim. and M latent dim.).

	AVG	8×4	4×24	8×16	16×12	64×8	10×30
STGS GR-MCK GST-1.0	107.06	$\begin{array}{c} 126.85{\pm}0.85\\ 125.94{\pm}0.71\\ 126.35{\pm}1.24\end{array}$	$99.96 {\pm} 0.25$	99.32 ± 0.33 99.58 ± 0.31 98.29 ± 0.66	$\begin{array}{c} 100.09{\pm}0.32\\ 102.54{\pm}0.48\\ 98.12{\pm}0.57\end{array}$	$\begin{array}{c} 104{\pm}0.41 \\ 112.34{\pm}0.48 \\ 102.53{\pm}0.57 \end{array}$	99.63 ± 0.63 102.02 ± 0.18 98.64 ± 0.33
ST ReinMax	116.72 103.21	135.53±0.31 124.66±0.88	112.03±0.03 99.77±0.45	112.94±0.32 97.70±0.39	113.31±0.43 98.06±0.53	113.90±0.28 100.71±0.70	112.63±0.34 98.37±0.44

MNIST-VAE with 4 latent dims and 8 categorical dims

Discussions and Experiments

- Discussions and Experiments
 - Effectiveness of ReinMax
 - Comparisons with REINFORCE-style algorithms
 - Impact of Temperature Scaling
 - Downstream Applications
 - Efficiency

ReinMax v.s. REINFORCE

 $f(\mathbf{D}) \cdot \frac{\partial \log P_{\theta}(\mathbf{D})}{\partial \theta}$

REIFORCE-style algorithms excel as they provide unbiased gradient estimations but may fall short in complex scenarios, since they only utilize the zero-order information.

f(D) a scalar

$$\frac{\partial f(\mathbf{D})}{\partial \mathbf{D}} \cdot \mathbf{\Lambda} \cdot \frac{\partial P_{\theta}(\mathbf{D})}{\partial \theta}$$

ReinMax, using more information, handles challenging scenarios better. Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in some simple scenarios.

 $\frac{\partial f(\mathrm{D})}{\partial D}$ a vector

ReinMax v.s. REINFORCE

RODEO: Gradient Estimation with Discrete Stein Operators

Table 6: Train –ELBO of 2×200 VAE on MNIST, Fashion-MNIST, and Omniglot. * Baseline results are referenced from Shi et al. (2022). K refers to the number of evaluations.

		RELAX*	ARMS*	DisARM*	Double CV*	RODEO*	ReinMax
K=3	MNIST Fashion-MNIST Omniglot	$ \begin{array}{c c} 101.99 \pm 0.04 \\ 237.74 \pm 0.12 \\ 115.70 \pm 0.08 \end{array} $	100.84 ± 0.14 237.05 \pm 0.12 115.32 \pm 0.07	 	100.94 ± 0.09 237.40±0.11 115.06±0.12	$\begin{array}{c} 100.46 {\pm} 0.13 \\ 236.88 {\pm} 0.12 \\ 115.01 {\pm} 0.05 \end{array}$	97.83±0.36 234.53±0.42 107.51±0.42
K=2	MNIST Fashion-MNIST Omniglot	 	 	102.75 ± 0.08 237.68 \pm 0.13 116.50 \pm 0.04	102.14 ± 0.06 237.55 \pm 0.16 116.39 \pm 0.10	$\begin{array}{c} 101.89 {\pm} 0.17 \\ 237.44 {\pm} 0.09 \\ 115.93 {\pm} 0.06 \end{array}$	$\begin{array}{c} 98.05{\pm}0.29\\ 234.86{\pm}0.33\\ 107.79{\pm}0.27\end{array}$

Bernoulli VAE

0.6

0.8

1.0 1e6

140

135

130

125

So 120

115

110

105

100

0.0

0.2

0.4

Update

ReinMax v.s. REINFORCE

n

$$\min_{\theta} E_{D \sim P_{\theta}} \frac{|D-c|_{p}^{P}}{L} \text{ where } \theta \in \mathbb{R}^{L \times 2}, D \in \{0, 1\}^{L}, \text{ and } D_{i} \stackrel{\text{iid}}{\sim} \text{ softmax}(\theta_{i})$$

---- ReinMax ---- RODEO ------ REINFORCE

ReinMax v.s. REINFORCE

 $f(\mathbf{D}) \cdot \frac{\partial \log P_{\theta}(\mathbf{D})}{\partial \theta}$

REIFORCE-style algorithms excel as they provide unbiased gradient estimation but may fall short in complex scenarios, since they only utilize the zero-order information.

f(D) a scalar

$$\frac{\partial f(\mathbf{D})}{\partial \mathbf{D}} \cdot \mathbf{\Lambda} \cdot \frac{\partial P_{\theta}(\mathbf{D})}{\partial \theta}$$

ReinMax, using more information, handles challenging scenarios better. Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in some simple scenarios.

 $\frac{\partial f(\mathrm{D})}{\partial D}$ a vector

Discussions and Experiments

- Discussions and Experiments
 - Effectiveness of ReinMax
 - Comparisons with REINFORCE-style algorithms
 - Impact of Temperature Scaling
 - Downstream Applications
 - Efficiency

Impact of Temperature Scaling

For STGS, temperature scaling helps to control the bias of the gradient estimation

For ST/ReinMax, temperature scaling helps to reduce the variance of the gradient estimation

Discussions and Experiments

- Discussions and Experiments
 - Effectiveness of ReinMax
 - Comparisons with REINFORCE-style algorithms
 - Impact of Temperature Scaling
 - Downstream Applications
 - Efficiency

Differentiable Architecture Search

The task Architecture Search is formulated as edge searching on a DAG:

- 1. Each node indicates a data
- 2. Edge of different colors indicate different operations (e.g., pooling / CNNs / ...)
- 3. STGS used as gradient estimator in GDAS

Differentiable Architecture Search

Table 4: Performance on NATS-Bench. * Baseline results are referenced from Dong et al. (2020a).

	CIFAR-10		CIFAR-100		ImageNet-16-120	
	validation	test	validation	test	validation	test
GDAS + STGS*	89.68±0.72	93.23±0.58	68.35±2.71	68.17±2.50	39.55±0.00	39.40±0.00
GDAS + ReinMax	90.01±0.12	93.44±0.23	69.29±2.34	69.41±2.24	41.47±0.79	42.03±0.41

Discussions and Experiments

- Discussions and Experiments
 - Effectiveness of ReinMax
 - Comparisons with REINFORCE-style algorithms
 - Impact of Temperature Scaling
 - Downstream Applications
 - Efficiency

Wall-Clock Efficiency Comparisons

Table 4: Average time cost (per epoch) / peak memory consumption on quadratic programming (QP) and MNIST-VAE. QP is configured to have 128 binary latent variables and 512 samples per batch. MNIST-VAE is configured to have 10 categorical dimensions and 30 latent dimensions.

	ReinMax	ST	STGS	GST-1.0	GR-MCK ₁₀₀	GR-MCK ₃₀₀	GR-MCK1000
QP	0.2s / 6.5Mb	0.2s / 5.0Mb	0.2s / 5.5Mb	0.2s / 8.0Mb	0.8s / 0.3Gb	2.2s / 1Gb	6.6s / 3Gb
MNIST-VAE	5.2s / 13Mb	5.2s / 13Mb	5.2s / 13Mb	5.2s / 13Mb	5.2s / 76Mb	5.2s / 0.2Gb	5.4s / 0.6Gb

Take Aways

ST $(D \leftarrow P_{\theta}(D) - P_{\theta}(D).detach() + D)$ works as a first-order approximation to the gradient

ReinMax achieves second-order accuracy without any second-order derivatives, yielding better gradient estimation with negligible computation overheads

Take Aways

ST $(D \leftarrow P_{\theta}(D) - P_{\theta}(D).detach() + D)$ works as a first-order approximation to the gradient

ReinMax achieves second-order accuracy without any second-order derivatives, yielding better gradient estimation with negligible computation overheads

MSR is Hiring! FTE & Intern headcounts available! Feel free to reach out :)

Under the guidance of ReinMax, we have a follow-up work on Mixture-of-Expert training. Feel free to stop by!

ReinMax Poster Section 2

