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Deep Learning and Gradient Descent 
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0. Overview 



Back-propagation and Chain’s Rule
For differentiable functions, back-propagation allows the gradient to be 
computed efficiently. 
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Back-propagation and Discrete Variables
For applications involving discrete variables, back-propagation can not be 
directly applied as before. 

4

0. Overview 

𝜃𝜃 P D 𝑓𝑓

𝜕𝜕 𝑓𝑓
𝜕𝜕 𝜃𝜃

=
𝜕𝜕 𝑓𝑓
𝜕𝜕 𝐷𝐷

⋅
𝜕𝜕 𝐷𝐷
𝜕𝜕 𝑃𝑃

⋅
𝜕𝜕 𝑃𝑃
𝜕𝜕 𝜃𝜃



Back-propagation and Discrete Variables
This challenge impacts various applications, including Mixture-of-Experts, 
Differentiable Neural Architecture Search, Discrete Variational Autoencoder. 
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Bridge Back-propagation and Discrete

𝜕𝜕 𝑓𝑓
𝜕𝜕 𝜃𝜃

≈
𝜕𝜕 𝑓𝑓
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⋅ Λ ⋅
𝜕𝜕 𝑃𝑃
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We propose ReinMax to bridge discrete and back-propagation. It 
achieves second-order accuracy with little computation overheads.

Bridge Back-propagation and Discrete

7

0. Overview 

𝜃𝜃 P D 𝑓𝑓

𝜕𝜕 𝑓𝑓
𝜕𝜕 𝜃𝜃

=
𝜕𝜕 𝑓𝑓
𝜕𝜕 𝐷𝐷

⋅
𝜕𝜕 𝐷𝐷
𝜕𝜕 𝑃𝑃

⋅
𝜕𝜕 𝑃𝑃
𝜕𝜕 𝜃𝜃

Λ

𝜕𝜕 𝑓𝑓
𝜕𝜕 𝜃𝜃

≈
𝜕𝜕 𝑓𝑓
𝜕𝜕 𝐷𝐷

⋅ Λ ⋅
𝜕𝜕 𝑃𝑃
𝜕𝜕 𝜃𝜃



Outline
• Background 

• Gradient Approximation: a Numerical ODE Perspective

• How Straight-Through Works?

• How to Make it Better?

• Discussions and Experiments
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Simplified Scenario as Problem Setting

𝜃𝜃 P𝜃𝜃(D) D 𝑓𝑓(D)

P𝜃𝜃 D = softmax 𝜃𝜃 D = 𝜋𝜋D

D ∼ 𝜋𝜋D

𝑓𝑓(D)

we use softmax to parameterize the general categorical distribution

the sampling of D is not differentiable

𝑓𝑓(D) could be any neural network 

The training object is min
𝜃𝜃

 𝐸𝐸D∼P𝜃𝜃[𝑓𝑓 D ]

D ∈ {𝐼𝐼1 ,⋯ , 𝐼𝐼𝑛𝑛},
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The Gradient

𝜃𝜃 P𝜃𝜃(D) D 𝑓𝑓(D)

min
𝜃𝜃

 𝐸𝐸D∼P𝜃𝜃 𝑓𝑓 D = min
𝜃𝜃

 �
D

𝑓𝑓 D ⋅ 𝑃𝑃𝜃𝜃(D)

This is known as the REINFORCE algorithm

Although REINFORCE provides unbiased gradient estimations, in practice, it 
is usually hard to apply REINFORCE, as it suffers from a large variance

∇= ∑D 𝑓𝑓 D ⋅ 𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃

= 𝐸𝐸D∼P𝜃𝜃
𝑓𝑓 D
𝑃𝑃𝜃𝜃 D

𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃
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Straight-Through Gradient Approximation

𝜃𝜃 P𝜃𝜃(D) D 𝑓𝑓(D)

𝜕𝜕 𝑓𝑓 D
𝜕𝜕 D

𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃

𝜕𝜕 D
𝜕𝜕𝑃𝑃𝜃𝜃 D ← 1

In practice, a commonly used technique is called straight-through. It treats 
non-differentiable function (e.g., the sampling of D) as if it is an identity 
function in gradient computation.  

D ← P𝜃𝜃 D  − P𝜃𝜃 D .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() + D

�∇ST=
𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷 ⋅

𝜕𝜕 𝑃𝑃𝜃𝜃(𝐷𝐷)
𝜕𝜕 𝜃𝜃
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Straight-Through Gumbel-Softmax
• A more popular family of Straight-Through estimators is Straight-Through Gumbel-

Softmax (STGS)

• Gumbel-Softmax Trick—the sampling of D (D ∼ P𝜃𝜃 ) can be reparameterized as zero-
temperature limit:

• STGS treats the zero-temperature limit as identity function when compute gradients. 

D = lim
𝜏𝜏→0

 softmax𝜏𝜏(𝜃𝜃 + 𝐺𝐺)     where 𝐺𝐺𝑖𝑖  are i.i.d. and 𝐺𝐺𝑖𝑖 ∼ Gumbel(0, 1) 

𝜃𝜃 𝑃𝑃𝜃𝜃+𝐺𝐺
𝜏𝜏

D D 𝑓𝑓(D)

G 𝜕𝜕 D
𝜕𝜕𝑃𝑃𝜃𝜃+𝐺𝐺

𝜏𝜏
D ← 1

�∇STGS=
𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷 ⋅

𝜕𝜕 𝑃𝑃𝜃𝜃+𝐺𝐺
𝜏𝜏

(𝐷𝐷)

𝜕𝜕 𝜃𝜃
12
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How ST Works?

13
𝜃𝜃 𝑓𝑓(D)

G

D

𝜕𝜕 D
𝜕𝜕𝑃𝑃𝜃𝜃+𝐺𝐺

𝜏𝜏
D ← 1

𝑃𝑃𝜃𝜃+𝐺𝐺
𝜏𝜏

D

𝜃𝜃 P𝜃𝜃(D) D 𝑓𝑓(D)

𝜕𝜕 D
𝜕𝜕𝑃𝑃𝜃𝜃 D

← 1

�∇ST

�∇STGS

1.0 Background



Outline
• Background 

• Gradient Approximation: a Numerical ODE Perspective

• How Straight-Through Works?

• How to Make it Better?

• Discussions and Experiments
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How Straight-Through Works?
Theorem 1: E[�∇ST] is a first-order approximation of ∇, where

∇= �
D

𝑓𝑓 D ⋅
𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃

∇= �
𝑖𝑖

�
j

𝑃𝑃𝜃𝜃 𝐼𝐼𝑗𝑗 ⋅ (𝑓𝑓 𝐼𝐼𝑖𝑖 − 𝑓𝑓 𝐼𝐼𝑗𝑗 ) ⋅
𝜕𝜕 𝑃𝑃𝜃𝜃 𝐼𝐼𝑖𝑖
𝜕𝜕 𝜃𝜃

Subtract E[𝑓𝑓 D ] 
as the baseline 

Approximate 𝑓𝑓 𝐼𝐼𝑖𝑖 − 𝑓𝑓 𝐼𝐼𝑗𝑗  

as 
𝜕𝜕𝑓𝑓 𝐼𝐼𝑗𝑗
𝜕𝜕𝐼𝐼𝑗𝑗

(𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑗𝑗)
E[�∇ST] = E[

𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷 ⋅

𝜕𝜕 𝑃𝑃𝜃𝜃(𝐷𝐷)
𝜕𝜕 𝜃𝜃 ]

�∇ST=
𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷

⋅
𝜕𝜕 𝑃𝑃𝜃𝜃(𝐷𝐷)
𝜕𝜕 𝜃𝜃
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D ← P𝜃𝜃 D  − P𝜃𝜃 D .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() + D

Discussions on Theorem 1
• In Tokui & Sato (2017), the authors positioned E[�∇ST] as a first-order approximation, but 

their analyses are exclusively rooted in the properties of Bernoulli variables:
• Consider D ∈ {𝐼𝐼1, 𝐼𝐼2}, we have: ∇= f I1 − f I2 ⋅ 𝜕𝜕𝑃𝑃𝜃𝜃 I2

𝜕𝜕𝜃𝜃
= f I2 − f I1 ⋅ 𝜕𝜕𝑃𝑃𝜃𝜃(I1)

𝜕𝜕𝜃𝜃

• The analyses in Gregor et al. (2014) and Pervez et al. (2020) are applicable to multinomial 
variables, but resort to adding a term, i.e., 𝐸𝐸[ 1

𝑛𝑛⋅𝜋𝜋𝐷𝐷
�∇ST] is positioned as a first-order 

approximation instead. 
• We believe 1

𝑛𝑛⋅𝜋𝜋𝐷𝐷
�∇ST induces unwanted instability (please check our paper for more details).

• Theorem 1 is the first that formally established that                                                     works 
as a first-order approximation in the multinomial case.   

16

1.1 ReinMax



How Straight-Through Works?
Theorem 1: E[�∇ST] is a first-order approximation of ∇, where

∇= �
D

𝑓𝑓 D ⋅
𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃

∇= �
𝑖𝑖

�
j

𝑃𝑃𝜃𝜃 𝐼𝐼𝑗𝑗 ⋅ (𝑓𝑓 𝐼𝐼𝑖𝑖 − 𝑓𝑓 𝐼𝐼𝑗𝑗 ) ⋅
𝜕𝜕 𝑃𝑃𝜃𝜃 𝐼𝐼𝑖𝑖
𝜕𝜕 𝜃𝜃

Subtract E[𝑓𝑓 D ] 
as the baseline 

Approximate 𝑓𝑓 𝐼𝐼𝑖𝑖 − 𝑓𝑓 𝐼𝐼𝑗𝑗  

as 
𝜕𝜕𝑓𝑓 𝐼𝐼𝑗𝑗
𝜕𝜕𝐼𝐼𝑗𝑗

(𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑗𝑗)
E[�∇ST] = E[

𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷 ⋅

𝜕𝜕 𝑃𝑃𝜃𝜃(𝐷𝐷)
𝜕𝜕 𝜃𝜃 ]

�∇ST=
𝜕𝜕𝑓𝑓(𝐷𝐷)
𝜕𝜕 𝐷𝐷

⋅
𝜕𝜕 𝑃𝑃𝜃𝜃(𝐷𝐷)
𝜕𝜕 𝜃𝜃

17

1.1 ReinMax



How Straight-Through Works?
• We show that Straight-Through works as

• This approximation has been known as the Euler’s method, a first-order numerical ODE solver

𝑓𝑓( ) ≈  𝑓𝑓′  ⋅ ( )𝑓𝑓( )

𝐷𝐷

𝑓𝑓′ D
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How to Improve Straight-Through?
• Approximate                                better 𝑓𝑓( ) 𝑓𝑓( )

𝐷𝐷

𝑓𝑓′ D

Euler’s method

𝐷𝐷

𝑓𝑓′ D

Heun’s method
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From Euler to Heun
Heun’s method approximate

𝐷𝐷

𝑓𝑓′ D

𝑓𝑓( ) ≈
1
2 ⋅ (𝑓𝑓′  + 𝑓𝑓′  ) ⋅ ( )𝑓𝑓( )

While Euler’s method achieves first-order accuracy, Heun’s 
method achieves second-order accuracy without requiring 
second-order derivatives. 

Heun’s method

20

1.1 ReinMax



We propose ReinMax to bridge discrete and back-propagation. It 
achieves second-order accuracy with little computation overheads.

ReinMax
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𝜕𝜕 𝑑𝑑
𝜕𝜕 𝑥𝑥
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Outline
• Background 

• Gradient Approximation: a Numerical ODE Perspective

• Discussions and Experiments
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Discussions and Experiments
• Discussions and Experiments

• Effectiveness of ReinMax

• Comparisons with REINFORCE-style algorithms

• Impact of Temperature Scaling

• Downstream Applications

• Efficiency
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Effectiveness of ReinMax
Major Baselines

1. Straight-Through Gumbel-Softmax (STGS)

2. Straight-Through (ST)

3. Rao-Blackwellizing Gumbel-Softmax Straight-Through (GR-MCK; ICLR’21)

4. Gapped Straight-Through (GST-1.0; ICML’22)
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Polynomial Programming

min
𝜃𝜃

𝐸𝐸𝐷𝐷∼𝑃𝑃𝜃𝜃
𝐷𝐷−𝑐𝑐 𝑝𝑝

𝑝𝑝

128
where 𝜃𝜃 ∈ 𝑅𝑅128×2, 𝐷𝐷 ∈ 0, 1 128, and 𝐷𝐷𝑖𝑖 ~ softmax(𝜃𝜃𝑖𝑖)

iid
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ListOps and MNIST-VAE
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MNIST-VAE with 4 latent dims and 8 categorical dims
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1.2 ReinMax-EXP

𝐶𝐶𝐶𝐶𝐶𝐶(∇, �∇method)



Discussions and Experiments
• Discussions and Experiments

• Effectiveness of ReinMax

• Comparisons with REINFORCE-style algorithms

• Impact of Temperature Scaling

• Downstream Applications

• Efficiency
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ReinMax v.s. REINFORCE

REIFORCE-style algorithms excel as they provide 
unbiased gradient estimations but may fall short 
in complex scenarios, since they only utilize the 
zero-order information.

ReinMax, using more information, handles 
challenging scenarios better. Meanwhile, as a 
consequence of its estimation bias, ReinMax
leads to slower convergence in some simple 
scenarios.

30

𝑓𝑓(D)

𝜕𝜕𝑓𝑓 D
𝜕𝜕 𝐷𝐷

a scalar

a vector

𝑓𝑓 D ⋅
𝜕𝜕 log𝑃𝑃𝜃𝜃 D

𝜕𝜕 𝜃𝜃

𝜕𝜕 𝑓𝑓 D
𝜕𝜕 D ⋅ Λ ⋅

𝜕𝜕 𝑃𝑃𝜃𝜃 D
𝜕𝜕 𝜃𝜃

1.2 ReinMax-EXP



ReinMax v.s. REINFORCE

RODEO: Gradient Estimation with Discrete Stein Operators
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Bernoulli VAE
Fashion MNIST MNIST Omniglot

K=
2

K=
3
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ReinMax v.s. REINFORCE

min
𝜃𝜃

 𝐸𝐸𝐷𝐷∼𝑃𝑃𝜃𝜃
𝐷𝐷−𝑐𝑐 𝑝𝑝

𝑝𝑝

𝐿𝐿
 where 𝜃𝜃 ∈ 𝑅𝑅𝐿𝐿×2, 𝐷𝐷 ∈ 0, 1 𝐿𝐿, and 𝐷𝐷𝑖𝑖  ~ softmax(𝜃𝜃𝑖𝑖)

𝑑𝑑 = [
0.5
𝐿𝐿 ,

1.5
𝐿𝐿 ,⋯ ,

𝐿𝐿 − 0.5
𝐿𝐿 ]𝑑𝑑 = [0.45, 0.45,⋯ , 0.45]

iid

33

1.2 ReinMax-EXP



ReinMax v.s. REINFORCE

REIFORCE-style algorithms excel as they provide 
unbiased gradient estimation but may fall short 
in complex scenarios, since they only utilize the 
zero-order information.

ReinMax, using more information, handles 
challenging scenarios better. Meanwhile, as a 
consequence of its estimation bias, ReinMax
leads to slower convergence in some simple 
scenarios.
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Discussions and Experiments
• Discussions and Experiments

• Effectiveness of ReinMax

• Comparisons with REINFORCE-style algorithms

• Impact of Temperature Scaling

• Downstream Applications

• Efficiency
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Impact of Temperature Scaling

For STGS, temperature scaling helps to control the bias of the gradient estimation

For ST/ReinMax, temperature scaling helps to reduce the variance of the gradient estimation
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Discussions and Experiments
• Discussions and Experiments

• Effectiveness of ReinMax

• Comparisons with REINFORCE-style algorithms

• Impact of Temperature Scaling

• Downstream Applications

• Efficiency
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Differentiable Architecture Search 

The task Architecture Search is formulated as 
edge searching on a DAG:

1. Each node indicates a data

2. Edge of different colors indicate different 
operations (e.g., pooling / CNNs / …)

3. STGS used as gradient estimator in GDAS 
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Differentiable Architecture Search 
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Discussions and Experiments
• Discussions and Experiments

• Effectiveness of ReinMax

• Comparisons with REINFORCE-style algorithms

• Impact of Temperature Scaling

• Downstream Applications

• Efficiency

40

1.2 ReinMax-EXP



Wall-Clock Efficiency Comparisons

41

1.2 ReinMax-EXP



Take Aways

42

D ← P𝜃𝜃 D  − P𝜃𝜃 D .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() + DST (                                             ) works as a first-order 
approximation to the gradient

ReinMax achieves second-order accuracy without any 
second-order derivatives, yielding better gradient 
estimation with negligible computation overheads
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D ← P𝜃𝜃 D  − P𝜃𝜃 D .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() + DST (                                             ) works as a first-order 
approximation to the gradient

ReinMax achieves second-order accuracy without any 
second-order derivatives, yielding better gradient 
estimation with negligible computation overheads

MSR is Hiring! FTE & Intern headcounts available! Feel free to reach out : ) 

Under the guidance of ReinMax, we 
have a follow-up work on Mixture-of-
Expert training. Feel free to stop by!

ReinMax
Poster Section 2

SparseMixer @ WANT Workshop
Oral Section: 11:30->12:00pm
Poster Section: 5:00->5:30pm
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