Bridging Discrete and Backpropagation: Straight-Through and Beyond

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, Jianfeng Gao

Microsoft Research

Deep Learning and Gradient Descent

Back-propagation and Chain's Rule

For differentiable functions, back-propagation allows the gradient to be computed efficiently.

Back-propagation and Discrete Variables

For applications involving discrete variables, back-propagation can not be directly applied as before.

Back-propagation and Discrete Variables

This challenge impacts various applications, including Mixture-of-Experts, Differentiable Neural Architecture Search, Discrete Variational Autoencoder.

Bridge Back-propagation and Discrete

Bridge Back-propagation and Discrete

We propose ReinMax to bridge discrete and back-propagation. It achieves second-order accuracy with little computation overheads.

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial D} \cdot \frac{\partial \Delta}{\partial \lambda D} \cdot \frac{\partial P}{\partial \theta} \\
\frac{\partial f}{\partial \theta} & \approx \frac{\partial f}{\partial D} \cdot \Lambda \cdot \frac{\partial P}{\partial \theta}
\end{aligned}
$$

Outline

- Background

- Gradient Approximation: a Numerical ODE Perspective
- How Straight-Through Works?
- How to Make it Better?
- Discussions and Experiments

Simplified Scenario as Problem Setting

$\mathrm{P}_{\theta}(\mathrm{D})=\operatorname{softmax}(\theta)_{\mathrm{D}}=\pi_{\mathrm{D}} \quad$ we use softmax to parameterize the general categorical distribution

$$
\mathrm{D} \in\left\{I_{1}, \cdots, I_{n}\right\}, \mathrm{D} \sim \pi_{\mathrm{D}} \quad \text { the sampling of } \mathrm{D} \text { is not differentiable }
$$

The Gradient

$$
\min _{\theta} E_{\mathrm{D} \sim \mathrm{P}}^{\theta} \text { }[f(\mathrm{D})]=\min _{\theta} \sum_{\mathrm{D}} f(\mathrm{D}) \cdot P_{\theta}(\mathrm{D}) \quad \nabla=\sum_{\mathrm{D}} f(\mathrm{D}) \cdot \frac{\partial P_{\theta}(\mathrm{D})}{\partial \theta}=E_{\mathrm{D} \sim \mathrm{P}_{\theta}}\left[\frac{f(\mathrm{D})}{P_{\theta}(\mathrm{D})} \frac{\partial P_{\theta}(\mathrm{D})}{\partial \theta}\right]
$$

This is known as the REINFORCE algorithm
Although REINFORCE provides unbiased gradient estimations, in practice, it is usually hard to apply REINFORCE, as it suffers from a large variance

Straight-Through Gradient Approximation

In practice, a commonly used technique is called straight-through. It treats non-differentiable function (e.g., the sampling of D) as if it is an identity function in gradient computation.

Straight-Through Gumbel-Softmax

- A more popular family of Straight-Through estimators is Straight-Through GumbelSoftmax (STGS)
- Gumbel-Softmax Trick-the sampling of $\mathrm{D}\left(\mathrm{D} \sim \mathrm{P}_{\theta}\right)$ can be reparameterized as zerotemperature limit:

$$
\mathrm{D}=\lim _{\tau \rightarrow 0} \operatorname{softmax}_{\tau}(\theta+G) \quad \text { where } G_{i} \text { are i.i.d. and } G_{i} \sim \operatorname{Gumbel}(0,1)
$$

- STGS treats the zero-temperature limit as identity function when compute gradients.

How ST Works?

Outline

- Background

- Gradient Approximation: a Numerical ODE Perspective
- How Straight-Through Works?
- How to Make it Better?
- Discussions and Experiments

How Straight-Through Works?

Theorem 1: $\mathrm{E}\left[\widehat{\nabla}_{\mathrm{ST}}\right]$ is a first-order approximation of ∇, where $\widehat{\nabla}_{\mathrm{ST}}=\frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}$

$$
\begin{aligned}
& \nabla=\sum_{\mathrm{D}} f(\mathrm{D}) \cdot \frac{\partial P_{\theta}(\mathrm{D})}{\partial \theta}- \\
& \nabla=\sum_{i} \sum_{\mathrm{j}} P_{\theta}\left(I_{j}\right) \cdot\left(f\left(I_{i}\right)-f\left(I_{j}\right)\right) \cdot \frac{\partial P_{\theta}\left(I_{i}\right)}{\partial \theta} \\
& \mathrm{E}\left[\widehat{\nabla}_{\mathrm{ST}}\right]=\mathrm{E}\left[\frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}\right]
\end{aligned}
$$

Subtract E[f(D)] as the baseline

Approximate $f\left(I_{i}\right)-f\left(I_{j}\right)$

$$
\text { as } \frac{\partial f\left(I_{j}\right)}{\partial I_{j}}\left(I_{i}-I_{j}\right)
$$

Discussions on Theorem 1

- In Tokui \& Sato (2017), the authors positioned $\mathrm{E}\left[\widehat{\nabla}_{\mathrm{ST}}\right]$ as a first-order approximation, but their analyses are exclusively rooted in the properties of Bernoulli variables:
- Consider $\mathrm{D} \in\left\{I_{1}, I_{2}\right\}$, we have: $\nabla=\left(\mathrm{f}\left(\mathrm{I}_{1}\right)-\mathrm{f}\left(\mathrm{I}_{2}\right)\right) \cdot \frac{\partial P_{\theta}\left(\mathrm{I}_{2}\right)}{\partial \theta}=\left(\mathrm{f}\left(\mathrm{I}_{2}\right)-\mathrm{f}\left(\mathrm{I}_{1}\right)\right) \cdot \frac{\partial P_{\theta}\left(\mathrm{I}_{1}\right)}{\partial \theta}$
- The analyses in Gregor et al. (2014) and Pervez et al. (2020) are applicable to multinomial variables, but resort to adding a term, i.e., $E\left[\frac{1}{n \cdot \pi_{D}} \widehat{\nabla}_{\mathrm{ST}}\right]$ is positioned as a first-order approximation instead.
- We believe $\frac{1}{n \cdot \pi_{D}} \widehat{\nabla}_{\text {ST }}$ induces unwanted instability (please check our paper for more details).
- Theorem 1 is the first that formally established that $D \leftarrow P_{\theta}(D)-P_{\theta}(D) \cdot \operatorname{detach}()+D$ works as a first-order approximation in the multinomial case.

How Straight-Through Works?

Theorem 1: $\mathrm{E}\left[\widehat{\nabla}_{\mathrm{ST}}\right]$ is a first-order approximation of ∇, where $\widehat{\nabla}_{\mathrm{ST}}=\frac{\partial f(D)}{\partial D} \cdot \frac{\partial P_{\theta}(D)}{\partial \theta}$

Subtract $\mathrm{E}[\mathrm{f}(\mathrm{D})]$

as the baseline

$$
\begin{gathered}
\text { Approximate } f\left(I_{i}\right)-f\left(I_{j}\right) \\
\text { as } \frac{\partial f\left(I_{j}\right)}{\partial I_{j}}\left(I_{i}-I_{j}\right)
\end{gathered}
$$

How Straight-Through Works?

- This approximation has been known as the Euler's method, a first-order numerical ODE solver

How to Improve Straight-Through?

- Approximate $f\left(\left[\begin{array}{l}\mathrm{O} \\ \mathrm{O} \\ \mathrm{O}\end{array}\right)-f\left(\begin{array}{l}0 \\ \mathrm{O} \\ \mathrm{O}\end{array}\right)\right.$) better

Euler's method

Heun's method

From Euler to Heun

While Euler's method achieves first-order accuracy, Heun's method achieves second-order accuracy without requiring second-order derivatives.

Heun's method

ReinMax

We propose ReinMax to bridge discrete and back-propagation. It achieves second-order accuracy with little computation overheads.

$1 \boldsymbol{\pi}_{0} \leftarrow \operatorname{softmax}(\boldsymbol{\theta}) \quad 1 \boldsymbol{\pi}_{0} \leftarrow \operatorname{softmax}(\boldsymbol{\theta})$
Algorithm 2: ReinMax.
Input: $\boldsymbol{\theta}$: softmax input, τ : temperature.
Output: \boldsymbol{D} : one-hot samples.
${ }_{2} D \leftarrow$ sample_one_hot $\left(\boldsymbol{\pi}_{0}\right)$
$3 \pi_{1} \leftarrow \frac{D+\operatorname{softmax}_{\tau}(\boldsymbol{\theta})}{2}$
$4 \boldsymbol{\pi}_{1} \leftarrow \operatorname{softmax}\left(\right.$ stop_gradient $\left.\left(\ln \left(\boldsymbol{\pi}_{1}\right)-\boldsymbol{\theta}\right)+\boldsymbol{\theta}\right)$

```
```

Algorithm 1: ST.

```
```

Algorithm 1: ST.
Input: $\boldsymbol{\theta}$: softmax input, τ : temperature.
Input: $\boldsymbol{\theta}$: softmax input, τ : temperature.
Output: D : one-hot samples.
Output: D : one-hot samples.
$2 \boldsymbol{D} \leftarrow$ sample_one_hot $\left(\boldsymbol{\pi}_{0}\right)$
$2 \boldsymbol{D} \leftarrow$ sample_one_hot $\left(\boldsymbol{\pi}_{0}\right)$
$3 \pi_{1} \leftarrow \operatorname{softmax}_{\tau}(\boldsymbol{\theta})$
$3 \pi_{1} \leftarrow \operatorname{softmax}_{\tau}(\boldsymbol{\theta})$
/* stop_gradient(•) duplicates
/* stop_gradient(•) duplicates
its input and detaches it
its input and detaches it
from backpropagation. */
from backpropagation. */
$4 D \leftarrow \pi_{1}-$ stop_gradient $\left(\pi_{1}\right)+D$
$4 D \leftarrow \pi_{1}-$ stop_gradient $\left(\pi_{1}\right)+D$
return D

```
return \(D\)
```

```
*/ \(\quad 5 \pi_{2} \leftarrow 2 \cdot \pi_{1}-\frac{1}{2} \cdot \pi_{0}\)
\({ }^{6} \boldsymbol{D} \leftarrow \boldsymbol{\pi}_{2}-\operatorname{stop}\) _gradient \(\left(\boldsymbol{\pi}_{2}\right)+\boldsymbol{D}\)
7 return \(D\)
```

```
pip install reinmax
```

from reinmax import reinmax

- y_hard = one_hot_multinomial(logits.softmax())
- y_soft_tau = (logits/tau).softmax()
- y_hard = y_soft_tau - y_soft_tau.detach() + y_hard
+ y_hard, y_soft = reinmax(logits, tau)

Outline

- Background
- Gradient Approximation: a Numerical ODE Perspective
- Discussions and Experiments

Discussions and Experiments

- Discussions and Experiments
- Effectiveness of ReinMax
- Comparisons with REINFORCE-style algorithms
- Impact of Temperature Scaling
- Downstream Applications
- Efficiency

Effectiveness of ReinMax

Major Baselines

1. Straight-Through Gumbel-Softmax (STGS)
2. Straight-Through (ST)
3. Rao-Blackwellizing Gumbel-Softmax Straight-Through (GR-MCK; ICLR'21)
4. Gapped Straight-Through (GST-1.0; ICML'22)

Polynomial Programming

$\min _{\theta} E_{D \sim P_{\theta}} \frac{|D-c|_{p}^{p}}{128}$ where $\theta \in R^{128 \times 2}, D \in\{0,1\}^{128}$, and $D_{i} \stackrel{\text { iid }}{\sim} \operatorname{softmax}\left(\theta_{i}\right)$

ListOps and MNIST-VAE

Table 1: Performance on ListOps.

	STGS	GR-MCK	GST-1.0	ST	ReinMax
Valid Accuracy	66.95 ± 3.05	66.53 ± 0.58	66.28 ± 0.52	66.51 ± 0.76	$\mathbf{6 7 . 6 5} \pm \mathbf{1 . 2 5}$
Test Accuracy	67.30 ± 2.50	66.53 ± 0.86	66.30 ± 0.62	66.26 ± 0.48	$\mathbf{6 8 . 0 7} \pm \mathbf{1 . 1 8}$

Table 2: Training -ELBO on MNIST ($N \times M$ refers to N categorical dim. and M latent dim.).

	AVG	8×4	4×24	8×16	16×12	64×8	10×30
STGS	105.20	126.85 ± 0.85	101.32 ± 0.43	99.32 ± 0.33	100.09 ± 0.32	104 ± 0.41	99.63 ± 0.63
GR-MCK	107.06	125.94 ± 0.71	99.96 ± 0.25	99.58 ± 0.31	102.54 ± 0.48	112.34 ± 0.48	102.02 ± 0.18
GST-1.0	104.25	126.35 ± 1.24	101.49 ± 0.44	98.29 ± 0.66	98.12 ± 0.57	102.53 ± 0.57	98.64 ± 0.33
ST	116.72	135.53 ± 0.31	112.03 ± 0.03	112.94 ± 0.32	113.31 ± 0.43	113.90 ± 0.28	112.63 ± 0.34
ReinMax	$\mathbf{1 0 3 . 2 1}$	$\mathbf{1 2 4 . 6 6} \pm \mathbf{0 . 8 8}$	$\mathbf{9 9 . 7 7} \pm \mathbf{0 . 4 5}$	$\mathbf{9 7 . 7 0} \pm \mathbf{0 . 3 9}$	$\mathbf{9 8 . 0 6} \pm \mathbf{0 . 5 3}$	$\mathbf{1 0 0 . 7 1} \pm \mathbf{0 . 7 0}$	$\mathbf{9 8 . 3 7} \pm \mathbf{0 . 4 4}$

MNIST-VAE with 4 latent dims and 8 categorical dims

Discussions and Experiments

- Discussions and Experiments
- Effectiveness of ReinMax
- Comparisons with REINFORCE-style algorithms
- Impact of Temperature Scaling
- Downstream Applications
- Efficiency

ReinMax v.s. REINFORCE

$$
f(\mathrm{D}) \cdot \frac{\partial \log P_{\theta}(\mathrm{D})}{\partial \theta}
$$

REIFORCE-style algorithms excel as they provide
$\frac{\partial f(\mathrm{D})}{\partial \mathrm{D}} \cdot \Lambda \cdot \frac{\partial P_{\theta}(\mathrm{D})}{\partial \theta}$
ReinMax, using more information, handles challenging scenarios better. Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in some simple

$$
\frac{\partial f(\mathrm{D})}{\partial D} \text { a vector }
$$ scenarios.

unbiased gradient estimations but may fall short in complex scenarios, since they only utilize the zero-order information.

$$
f(\mathrm{D}) \text { a scalar }
$$

zero-order information.

ReinMax v.s. REINFORCE

RODEO: Gradient Estimation with Discrete Stein Operators

Table 6: Train -ELBO of 2×200 VAE on MNIST, Fashion-MNIST, and Omniglot. * Baseline results are referenced from Shi et al. (2022). K refers to the number of evaluations.

| | | RELAX * | ARMS * | DisARM * | Double CV * | RODEO* | ReinMax |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{K}=3$ | MNIST | 101.99 ± 0.04 | 100.84 ± 0.14 | $/$ | 100.94 ± 0.09 | 100.46 ± 0.13 | $\mathbf{9 7 . 8 3} \pm \mathbf{0 . 3 6}$ |
| | Fashion-MNIST | 237.74 ± 0.12 | 237.05 ± 0.12 | $/$ | 237.40 ± 0.11 | 236.88 ± 0.12 | $\mathbf{2 3 4 . 5 3} \pm \mathbf{0 . 4 2}$ |
| | Omniglot | 115.70 ± 0.08 | 115.32 ± 0.07 | $/$ | 115.06 ± 0.12 | 115.01 ± 0.05 | $\mathbf{1 0 7 . 5 1} \pm \mathbf{0 . 4 2}$ |
| $\mathrm{K}=2$ | MNIST | $/$ | $/$ | 102.75 ± 0.08 | 102.14 ± 0.06 | 101.89 ± 0.17 | $\mathbf{9 8 . 0 5} \pm \mathbf{0 . 2 9}$ |
| | Fashion-MNIST | $/$ | $/$ | 237.68 ± 0.13 | 237.55 ± 0.16 | 237.44 ± 0.09 | $\mathbf{2 3 4 . 8 6} \pm \mathbf{0 . 3 3}$ |
| | Omniglot | $/$ | $/$ | 116.50 ± 0.04 | 116.39 ± 0.10 | 115.93 ± 0.06 | $\mathbf{1 0 7 . 7 9} \pm \mathbf{0 . 2 7}$ |

Bernoulli VAE

Fashion MNIST

Omniglot

1e6

MNIST
-

ReinMax v.s. REINFORCE

$$
\min _{\theta} E_{D \sim P_{\theta}} \frac{|D-c|_{p}^{p}}{L} \text { where } \theta \in R^{L \times 2}, D \in\{0,1\}^{L} \text {, and } D_{i} \stackrel{\text { iid }}{\sim} \operatorname{softmax}\left(\theta_{i}\right)
$$

$$
c=[0.45,0.45, \cdots, 0.45]
$$

$$
c=\left[\frac{0.5}{L}, \frac{1.5}{L}, \cdots, \frac{L-0.5}{L}\right]
$$

ReinMax v.s. REINFORCE

$$
f(\mathrm{D}) \cdot \frac{\partial \log P_{\theta}(\mathrm{D})}{\partial \theta}
$$

REIFORCE-style algorithms excel as they provide unbiased gradient estimation but may fall short in complex scenarios, since they only utilize the zero-order information.
$\frac{\partial f(\mathrm{D})}{\partial \mathrm{D}} \cdot \Lambda \cdot \frac{\partial P_{\theta}(\mathrm{D})}{\partial \theta}$
ReinMax, using more information, handles challenging scenarios better. Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in some simple scenarios.

$$
f(\mathrm{D}) \text { a scalar }
$$

$$
\frac{\partial f(\mathrm{D})}{\partial D} \text { a vector }
$$

Discussions and Experiments

- Discussions and Experiments
- Effectiveness of ReinMax
- Comparisons with REINFORCE-style algorithms
- Impact of Temperature Scaling
- Downstream Applications
- Efficiency

Impact of Temperature Scaling

For STGS, temperature scaling helps to control the bias of the gradient estimation
For ST/ReinMax, temperature scaling helps to reduce the variance of the gradient estimation

Discussions and Experiments

- Discussions and Experiments
- Effectiveness of ReinMax
- Comparisons with REINFORCE-style algorithms
- Impact of Temperature Scaling
- Downstream Applications
- Efficiency

Differentiable Architecture Search

The task Architecture Search is formulated as edge searching on a DAG:

1. Each node indicates a data
2. Edge of different colors indicate different operations (e.g., pooling / CNNs / ...)
3. STGS used as gradient estimator in GDAS

Differentiable Architecture Search

Table 4: Performance on NATS-Bench. * Baseline results are referenced from Dong et al. (2020a).

	CIFAR-10		CIFAR-100		ImageNet-16-120	
	validation	test	validation	test	validation	test
	89.68 ± 0.72	93.23 ± 0.58	68.35 ± 2.71	68.17 ± 2.50	39.55 ± 0.00	39.40 ± 0.00
	$\mathbf{9 0 . 0 1} \pm \mathbf{0 . 1 2}$	$\mathbf{9 3 . 4 4} \pm \mathbf{0 . 2 3}$	$\mathbf{6 9 . 2 9} \pm \mathbf{2 . 3 4}$	$\mathbf{6 9 . 4 1} \pm \mathbf{2 . 2 4}$	$\mathbf{4 1 . 4 7} \pm \mathbf{0 . 7 9}$	$\mathbf{4 2 . 0 3} \pm \mathbf{0 . 4 1}$

Discussions and Experiments

- Discussions and Experiments
- Effectiveness of ReinMax
- Comparisons with REINFORCE-style algorithms
- Impact of Temperature Scaling
- Downstream Applications
- Efficiency

Wall-Clock Efficiency Comparisons

Table 4: Average time cost (per epoch) / peak memory consumption on quadratic programming (QP) and MNIST-VAE. QP is configured to have 128 binary latent variables and 512 samples per batch. MNIST-VAE is configured to have 10 categorical dimensions and 30 latent dimensions.

	ReinMax	ST	STGS	GST-1.0	GR-MCK 100	GR-MCK 300	GR-MCK ${ }_{1000}$
QP	$0.2 \mathrm{~s} / 6.5 \mathrm{Mb}$	$0.2 \mathrm{~s} / 5.0 \mathrm{Mb}$	$0.2 \mathrm{~s} / 5.5 \mathrm{Mb}$	$0.2 \mathrm{~s} / 8.0 \mathrm{Mb}$	$0.8 \mathrm{~s} / 0.3 \mathrm{~Gb}$	$2.2 \mathrm{~s} / 1 \mathrm{~Gb}$	$6.6 \mathrm{~s} / 3 \mathrm{~Gb}$
MNIST-VAE	$5.2 \mathrm{~s} / 13 \mathrm{Mb}$	$5.2 \mathrm{~s} / 76 \mathrm{Mb}$	$5.2 \mathrm{~s} / 0.2 \mathrm{~Gb}$	$5.4 \mathrm{~s} / 0.6 \mathrm{~Gb}$			

Take Aways

ST $\left(\mathrm{D} \leftarrow \mathrm{P}_{\theta}(\mathrm{D})-\mathrm{P}_{\theta}(\mathrm{D}) \cdot \operatorname{detach}()+\mathrm{D}\right)$ works as a first-order approximation to the gradient

ReinMax achieves second-order accuracy without any second-order derivatives, yielding better gradient estimation with negligible computation overheads

Take Aways

ST $\left(\mathrm{D} \leftarrow \mathrm{P}_{\theta}(\mathrm{D})-\mathrm{P}_{\theta}(\mathrm{D}) \cdot \operatorname{detach}()+\mathrm{D}\right)$ works as a first-order approximation to the gradient

ReinMax achieves second-order accuracy without any second-order derivatives, yielding better gradient estimation with negligible computation overheads

