

Neural Lighting Simulation for Urban Scenes

Ava Pun^{*1,3}, Gary Sun^{*1,3}, Jingkang Wang^{*1,2}, Yun Chen^{1,2}, Ze Yang^{1,2} Siva Manivasagam^{1,2}, Wei-Chiu Ma^{1,4}, Raquel Urtasun^{1,2}

https://waabi.ai/lightsim

37th Conference on Neural Information Processing Systems (2023), New Orleans, USA

Simulation for Robust Image Perception in Robots

- Modern camera-based perception systems are not robust under different lighting
- Collecting data under various lighting are expensive and time-consuming
- We need scalable and affordable way to generate experiences Simulation!

Real Data Collection

Simulation Variations (Actor cut in + lighting changes)

Existing Simulators Lack Scale and Diversity

- Standard game engines for simulation such as CARLA [1]:
 - not scalable, lacking diversity, unrealistic
- Limited number of manually designed assets and lighting conditions
- Trained perception system generalizes poorly to the real world [2]

Existing Simulators Bake the Lighting

- Data-driven simulators build digital twins with baked lighting
 - Simulation limited to one single scene and cannot generalize
 - No lighting simulation (shadows, inter-object lighting effects)

UniSim [5]

- [1] GeoSim: Realistic Video Simulation via Geometry-Aware Composition for Self-Driving. [Chen at al., CVPR 2021]
- [2] AADS: Augmented autonomous driving simulation using data-driven algorithms. [Li et al., Sci. Robotics. 2021]

[3] VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and Policy Learning for Autonomous Vehicles [Amini et al., ICRA 2022]

[4] Neural Scene Graphs for Dynamic Scenes. [Ost et al., CVPR 2021]

[5] UniSim: A Neural Closed-Loop Sensor Simulator. [Yang, et al. CVPR 2023]

Our Goal

• Create a diverse, controllable, and realistic simulator that can generate camera data of scenes at scale under diverse lighting conditions

Realistic

Our Goal

• Create a diverse, controllable, and realistic simulator that can generate camera data of scenes at scale under diverse lighting conditions

Our Goal

• Create a diverse, controllable, and realistic simulator that can generate camera data of scenes at scale under diverse lighting conditions

• Neural scene reconstruction to recover scene geometry and texture

Sensor data

Neural scene reconstruction to recover scene geometry and texture

Sensor data

Compositional neural radiance field (background + actors)

Neural scene reconstruction to recover scene geometry and texture

Explicit digital twins (geometry, texture)

• Neural scene reconstruction to recover scene geometry and texture

Sensor data

Neural Scene Reconstruction

Explicit digital twins (geometry, texture)

• Neural lighting simulation to recover the HDR sky dome

$$\{\mathbf{I}_{\mathrm{i}},\mathbf{D}_{i}\}_{i=1}^{K} \overset{\mathsf{Unproj.}}{\longrightarrow} \mathbf{I}_{\mathrm{pano}}$$

$$\{\mathbf{I}_i\}_{i=1}^K \qquad \qquad \text{partial panorama } \mathbf{I}_{\text{pano}} \\ \{\mathbf{D}_i\}_{i=1}^K \boxed{ \left[\begin{array}{c} \mathbf{I}_i \\ \mathbf{I}_i \end{array} \right]_{i=1}^K \left[\begin{array}[\begin{array}{c} \mathbf{I}_i \\ \mathbf{I}_i \end{array} \right]_{i=1}^K$$

Neural lighting simulation to recover the HDR sky dome

• Neural lighting simulation to recover the HDR sky dome

- Neural scene reconstruction to recover scene geometry and texture
- Neural lighting simulation to recover the HDR sky dome

Relightable digital twins (geometry, texture, lighting)

- Derive augmented reality representation from digital twins
- Generate lighting-relevant data with physically-based rendering
- Neural deferred rendering for lighting simulation

- Derive augmented reality representation from digital twins
- Generate lighting-relevant data with physically-based rendering
- Neural deferred rendering for lighting simulation

- Derive augmented reality representation from digital twins
- Generate lighting-relevant data with physically-based rendering
- Neural deferred rendering for lighting simulation

- Derive augmented reality representation from digital twins
- Generate lighting-relevant data with physically-based rendering
- Neural deferred rendering for lighting simulation

Scene Relighting

Real Video and Estimated Source Lighting

Simulated Video with Target Lighting

Shadow Editing

Real Image and Estimated Source Lighting

Simulated Video with Rotated Lighting

Lighting-aware Actor Insertion

Controllable Camera Simulation

Controllable Camera Simulation – variation 1

Simulated Variations

Controllable Camera Simulation – variation 2

Simulated Variations

Lighting Estimation Evaluation via Actor Insertion

Original

NLFE* (Panorama)

*HDR skydome only

SOLD-Net

Ours

Lighting Estimation Evaluation via Actor Insertion

Original

SOLD-Net

NLFE* (Panorama)

Ours

*HDR skydome only

Generalization on nuScenes

LightSim Simulated

Downstream Perception Training

• Realistic lighting simulation can help improve the performance of downstream object detection task under unseen lighting conditions

Model	mAP (%)
Real	32.1
Real + Color aug. [41]	33.8 (+1.7)
Real + Sim (Self-OSR)	30.3 (-1.8)
Real + Sim (EPE)	32.5(+0.4)
Real + Sim (Color Transfer)	35.1 (+3.0)
Real + Sim (Ours)	36.6(+4.5)

Comparison in Scene Relighting

Ablation Study

• Content-preserving loss

FID = 109.8

FID = 55.4

Ablation Study

• *sim-to-real* and *identity* pairs

Ablation Study

• Rendering buffers and shadow maps

Thank you!

Neural Lighting Simulation for Urban Scenes

Ava Pun^{*1,3}, Gary Sun^{*1,3}, Jingkang Wang^{*1,2}, Yun Chen^{1,2}, Ze Yang^{1,2}

Siva Manivasagam^{1,2}, Wei-Chiu Ma^{1,4}, Raquel Urtasun^{1,2}

https://waabi.ai/lightsim

37th Conference on Neural Information Processing Systems (2023), New Orleans, USA