Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
OO	O	O	O	00

Label Correction of Crowdsourced Noisy Annotations with an Instance-Dependent Noise Transition Model

Hui Guo¹ Boyu Wang¹ Grace Y. Yi ^{1, 2}

¹Department of Computer Science ²Department of Statistical and Actuarial Sciences University of Western Ontario

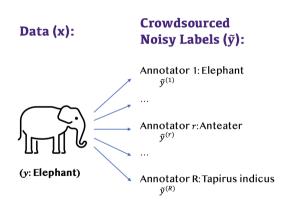
NeurIPS 2023, Virtual Talk

Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
●O	O	O	O	00
Problem Setup				

Crowdsourcing:

Each data item is labeled by multiple annotators with diverse expertise

- Noisy training data $\mathcal{D} = \{\mathbf{x}_i, \tilde{\mathbf{y}}_i^{(1)}, \dots, \tilde{\mathbf{y}}_i^{(R)}\}_{i=1}^N$
 - $\mathcal{X} \subset \mathbb{R}^p$: feature space
 - $\mathcal{Y} = \{1, \dots, K\}$: label space
 - R: number of annotators
 - $\mathbf{x}_i \in \mathcal{X}$: input data
 - $y_i \in \mathcal{Y}$: unobserved true label
 - $\tilde{\mathbf{y}}_i^{(r)} \in \mathcal{Y}$: the label given by the *r*th annotator with $r \in \{1, \dots, R\}$
- Goal: learn a classifier which correctly labels the new input data



ъ

Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
O●	O	O	O	OO
Noisy Label Ger	neration Process			

- Assumption: the R annotators independently label the instances
- Noisy label generation model:

$$\mathbb{P}(\tilde{\mathbf{y}}^{(1)},..,\tilde{\mathbf{y}}^{(R)}|\mathbf{x}) = \prod_{r=1}^{R} \mathbb{P}(\tilde{\mathbf{y}}^{(r)}|\mathbf{x}) = \prod_{r=1}^{R} \sum_{k \in \mathcal{Y}} \left\{ \mathbb{P}(\tilde{\mathbf{y}}^{(r)}|\mathbf{y}=k,\mathbf{x}) \mid P(\mathbf{y}=k|\mathbf{x}) \right\}$$

instance-dependent noise transition matrix for the *r*th annotator $f_0^{k,r}(\mathbf{x})$: distribution of $\tilde{\mathbf{y}}^{(r)}|\{\mathbf{y}=k,\mathbf{x}\}$, modeled by $f_{\boldsymbol{\theta}}^{k,r}(\mathbf{x})$

base model $h(\cdot; \vartheta)$ (true label predictor)

A D A A B A A B A A B A B A

• Issues about instance-dependent transition matrices:

- Most available methods require the *instance independent* assumption: $\mathbb{P}(\tilde{y}^{(r)}|y = k, \mathbf{x}) = \mathbb{P}(\tilde{y}^{(r)}|y = k);$ however, the instance dependent assumption is <u>more realistic</u>
- Modeling the instance-dependent transition matrix is challenging and remains relatively less explored
- <u>Theoretical characterization</u> of the distance of the noise model and the true transition matrix remains absent in the literature

Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
Approximate the	Instance-Depend	ent Noise Tran	sition Matrices	

- Bayesian network:
 - Deploy a set of (δ -pseudo) anchor points $\overline{\mathcal{D}}_0$ learned from noisy training data
 - An instance x is defined to be an (δ -pseudo) anchor point of class k if $\mathbb{P}(y = k | \mathbf{x}) = 1$ ($\mathbb{P}(y = k | \mathbf{x}) \ge \delta$)
 - The subsample size n of $\overline{\mathcal{D}}_0$ is relatively small compared to the main sample size N
 - Employ a hierarchical spike and slab prior on the network parameters
 - Sparse Bayesian network $f_{\boldsymbol{\theta}}^{k,r}$ with $\boldsymbol{\theta} \in \Theta$
- Posterior consistency result:
 - The sparse noise transition model is close to the underlying true transition matrix with respect to the Hellinger distance under mild conditions

Theorem 1

Let $d(\cdot, \cdot)$ denote the Hellinger distance. Under regularity conditions, there exists a sequence of constants $\{\epsilon_n^2\}_{n=1}^{\infty}$ satisfying $\lim_{n\to\infty} \epsilon_n = 0$ and $\lim_{n\to\infty} n\epsilon_n^2 = \infty$, such that for any $k \in \{1, \ldots, K\}$ and $r \in \{1, \ldots, R\}$, with probability tending to 1, the posterior measure satisfies

$$\Pi \left\{ \boldsymbol{\theta} \in \Theta : d(f_{\boldsymbol{\theta}}^{(k,r)}, f_0^{(k,r)}) > M_n \epsilon_n | \overline{\mathcal{D}}_0 \right\} \to 0 \text{ as any } M_n \to \infty.$$

00				00
Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary

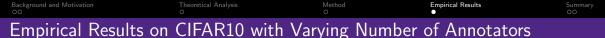
- Reformulate the label correction process:
 - Selecting the label for the instance \mathbf{x}_i from $\{g, g'\}$, is equivalent to choosing from the two competitors $\mathbb{P}(\tilde{\mathbf{y}}|y = g, \mathbf{x}_i)$ and $\mathbb{P}(\tilde{\mathbf{y}}|y = g', \mathbf{x}_i)$, where $1 \le g < g' \le K$
 - Hypothesis testing: $H_g : \tilde{\mathbf{y}}_i | \{ \mathbf{y}_i, \mathbf{x}_i \} \sim \mathbb{P}(\tilde{\mathbf{y}} | \mathbf{y} = g, \mathbf{x}_i) \text{ versus } H_{g'} : \tilde{\mathbf{y}}_i | \{ \mathbf{y}_i, \mathbf{x}_i \} \sim \mathbb{P}(\tilde{\mathbf{y}} | \mathbf{y} = g', \mathbf{x}_i)$
- Label correction method:
 - (Neyman-Pearson Lemma) Set the estimated label of x_i to be $\overline{y}_i = g$ if

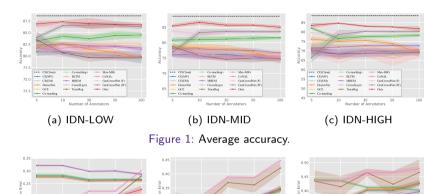
$$\frac{\hbar_{i,g}\prod_{r=1}^{R}\prod_{l=1}^{K}\left\{\tau_{i,gl}^{(r)}\right\}^{1(\tilde{y}_{i}^{(r)}=l)}}{\hbar_{i,g'}\prod_{r=1}^{R}\prod_{l=1}^{K}\left\{\tau_{i,g'l}^{(r)}\right\}^{1(\tilde{y}_{i}^{(r)}=l)}} > \Omega \text{ for any } g' \neq g$$

- \hbar_{ig} : class prior for the ground truth label for the *i*th task for $g \in \{1, \ldots, K\}$ \implies the predictions of base classifiers
- $\tau_{i,kl}^{(r)}$: the *l*th element of $f_{\theta}^{(k,r)}(\mathbf{x}_i)$ for $k, l \in \{1, \ldots, K\}$ and $r \in \{1, \ldots, R\}$

 \implies the maximum a posteriori (MAP) estimate

- Ω : pre-specified threshold
- Theorem 2:
 - Information-theoretic bounds on the Bayes error





With varying number of annotators, the proposed method

- achieves the highest average test accuracy:
- leads to smaller estimation error in most of the cases. especially when the noise rate is high.

Western 😪

э

TUNER

ConCrowdNet (1)

---- GeoCrowdNet (F) - GenCrowdNet (W) GenCrowdNet (W) GenCrandNet (W MBEM MREM MREM DUTM DUTM DUTM 0.0 ----- Our (a) IDN-LOW (b) IDN-MID (c) IDN-HIGH Figure 2: Average estimation error of noise transition matrices.

TraceRep

ConCroundNet (E)

TraceRea

Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
OO	O	O	O	●O
Summary				

In this work,

- We explore the challenging problem of learning with instance-dependent crowdsourced noisy annotations
- We formulate the annotator-specific noise transition matrix in the Bayesian framework
- We **theoretically characterize the closeness** of the proposed sparse Bayesian model and the underlying annotator confusions with respect to the Hellinger distance
- We develop a novel **label correction algorithm** by aggregating the noisy annotations using the pairwise likelihood ratio test, and identify **information-theoretic bounds** on the Bayes error
- Numerical experiments demonstrate that the proposed method outperforms the competing methods

Background and Motivation	Theoretical Analysis	Method	Empirical Results	Summary
OO	O	O	O	O

Thank You

