Memory Efficient Optimizers with 4-bit States

Bingrui Li, Jianfei Chen, Jun Zhu
Tsinghua University

Background

Data memory

- input data and activation in each layer

Model memory

- model parameters, optimizer states (and gradients)

Other (temporary) memory

- GPU kernel, cache, etc.

Background

Data memory

$$
\operatorname{Adam}\left(\mathbf{w}_{t-1}, \mathbf{m}_{t-1}, \mathbf{v}_{t-1}, \mathbf{g}_{t}\right)= \begin{cases}\mathbf{m}_{t} & =\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\ \mathbf{v}_{t} & =\beta_{2} \mathbf{v}_{t-1}+\left(1-\beta_{2}\right) \mathbf{g}_{t}^{2} \\ \hat{\mathbf{m}}_{t} & =\mathbf{m}_{t} /\left(1-\beta_{1}^{t}\right) \\ \hat{\mathbf{v}}_{t} & =\mathbf{v}_{t} /\left(1-\beta_{2}^{t}\right) \\ \mathbf{w}_{t} & =\mathbf{w}_{t-1}-\eta \cdot \hat{\mathbf{m}}_{t} /\left(\sqrt{\hat{\mathbf{v}}_{t}}+\epsilon\right)\end{cases}
$$

- input data and activation in each layer

Model memory
For LLaMA-7B:

- number of parameters: 7B
- model parameters, optimizer states (and gradients) - number of optimizer states: 14B when finetuned with AdamW (32-bit),
- memory of optimizer states: about 52.2GB.

Other (temporary) memory

- GPU kernel, cache, etc.

Goal: Reduce the memory consumption of optimizer states (in stateful optimizers), especially AdamW

Memory Efficient Methods

On optimizer states:

- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
- Factorization-based: Adafactor (Shazeer et al. ICML 2018), SM3 (Anil et al. NeurIPS 2019), Extreme Tensoring (Chen et al. ICLR 2020)
- By tuning fewer parameters: LoRA (Hu et al. ICLR 2022), prefix tuning (Li et al. 2021) etc.

Factorization-based Method: Adafactor

Shazeer et al. ICML 2018

$$
\begin{aligned}
\operatorname{minimize}_{R \in \mathbb{R}^{n \times k}, S \in \mathbb{R}^{k \times m}} & \sum_{i=1}^{n} \sum_{j=1}^{m} d\left(V_{i j},[R S]_{i j}\right) \\
\text { subject to } & R_{i j} \geq 0, S_{i j} \geq 0
\end{aligned}
$$

$$
R=V 1_{m}, \quad S=\frac{1_{n}^{\top} V}{1_{n}^{\top} V 1_{m}}
$$

```
Algorithm 2 Adam for a matrix parameter \(X\) with factored
second moments and first moment decay parameter \(\beta_{1}=0\).
    Inputs: initial point \(X_{0} \in \mathbb{R}^{n \times m}\), step sizes \(\left\{\alpha_{t}\right\}_{t=1}^{T}\),
    second moment decay \(\beta_{2}\), regularization constant \(\epsilon\)
    Initialize \(R_{0}=0\) and \(C_{0}=0\)
    for \(t=1\) to \(T\) do
    \(G_{t}=\nabla f_{t}\left(X_{t-1}\right)\)
    \(R_{t}=\beta_{2} R_{t-1}+\left(1-\beta_{2}\right)\left(G_{t}^{2}\right) 1_{m}\)
        \(C_{t}=\beta_{2} C_{t-1}+\left(1-\beta_{2}\right) 1_{n}^{\top}\left(G_{t}^{2}\right)\)
    \(\hat{V}_{t}=\left(R_{t} C_{t} / 1_{n}^{\top} R_{t}\right) /\left(1-\beta_{2}^{t}\right)\)
        \(X_{t}=X_{t-1}-\alpha_{t} G_{t} /\left(\sqrt{\hat{V}_{t}}+\epsilon\right)\)
    end for
```


Factorization-based Method: Adafactor

Shazeer et al. ICML 2018

$$
\begin{aligned}
\operatorname{minimize}_{R \in \mathbb{R}^{n \times k}, S \in \mathbb{R}^{k \times m}} & \sum_{i=1}^{n} \sum_{j=1}^{m} d\left(V_{i j},[R S]_{i j}\right) \\
\text { subject to } & R_{i j} \geq 0, S_{i j} \geq 0
\end{aligned}
$$

$$
R=V 1_{m}, \quad S=\frac{1_{n}^{\top} V}{1_{n}^{\top} V 1_{m}}
$$

```
Algorithm 2 Adam for a matrix parameter \(X\) with factored
second moments and first moment decay parameter \(\beta_{1}=0\).
    Inputs: initial point \(X_{0} \in \mathbb{R}^{n \times m}\), step sizes \(\left\{\alpha_{t}\right\}_{t=1}^{T}\),
    second moment decay \(\beta_{2}\), regularization constant \(\epsilon\)
    Initialize \(R_{0}=0\) and \(C_{0}=0\)
    for \(t=1\) to \(T\) do
    \(G_{t}=\nabla f_{t}\left(X_{t-1}\right)\)
    \(R_{t}=\beta_{2} R_{t-1}+\left(1-\beta_{2}\right)\left(G_{t}^{2}\right) 1_{m}\)
    \(C_{t}=\beta_{2} C_{t-1}+\left(1-\beta_{2}\right) 1_{n}^{\top}\left(G_{t}^{2}\right)\)
    \(\hat{V}_{t}=\left(R_{t} C_{t} / 1_{n}^{\top} R_{t}\right) /\left(1-\beta_{2}^{t}\right)\)
        \(X_{t}=X_{t-1}-\alpha_{t} G_{t} /\left(\sqrt{\hat{V}_{t}}+\epsilon\right)\)
    end for
```


Quantzation-based Method
 Dettmers et al. ICLR 2022

	Quantization Updated optimizer states					Dequantization Load Index values			
Optimizer State	-3.1	0.1	-0.03	1.2	Index	0	170	80	255
Chunk into blocks	-3.1	0.1	-0.03	1.2	Lookup values	-1.0	0.0329	-0.0242	1.0
Find block-wise absmax	3.1		1.2		Denormalize by absmax	-1.0*3.1	0.0329*3.1	-0.0242*1.2	1.0*1.2
Normalize with absmax	-1.0	0.032	-0.025	1.0	Dequantized optimizer states	-3.1	0.102	-0.029	1.2
Find closest 8-bit value	-1.0	0.0329	-0.0242	1.0					
Find corresponding index	0	170	80	255					
		Store ind	x values				Update opt	imizer state	

Memory Efficient Methods

On optimizer states:

- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
- Factorization-based: Adafactor (Shazeer et al. ICML 2018), SM3 (Anil et al. NeurIPS 2019), Extreme Tensoring (Chen et al. ICLR 2020)
- By tuning fewer parameters: LoRA (Hu et al. ICLR 2022), prefix tuning (Li et al. 2021) etc.

Preliminaries: Quantization

Disentangle quantizer $\mathrm{Q}(\cdot)$: normalization $\mathrm{N}(\cdot)$ and mapping $\mathrm{M}(\cdot)$

$$
q_{j}:=\mathbf{Q}\left(x_{j}\right)=\mathbf{M} \circ \mathbf{N}\left(x_{j}\right) .
$$

Preliminaries: Quantization

Disentangle quantizer $\mathrm{Q}(\cdot)$: normalization $\mathrm{N}(\cdot)$ and mapping $\mathrm{M}(\cdot)$

$$
q_{j}:=\mathbf{Q}\left(x_{j}\right)=\mathbf{M} \circ \mathbf{N}\left(x_{j}\right) .
$$

Normalization: scale each elements of original tensor into the unit interval

$$
\begin{aligned}
& n_{j}:=\mathbf{N}_{\text {per-tensor }}\left(x_{j}\right)=x_{j} / \max _{1 \leq i \leq p}\left|x_{i}\right| \\
& n_{j}:=\mathbf{N}_{\text {block-wise }}\left(x_{j}\right)=x_{j} / \max \left\{\left|x_{i}\right|: 1+B\lfloor j / B\rfloor \leq i \leq B(\lfloor j / B\rfloor+1)\right\},
\end{aligned}
$$

Different normalization methods give different quantization error and memory overhead.

Preliminaries: Quantization

Disentangle quantizer $\mathrm{Q}(\cdot)$: normalization $\mathrm{N}(\cdot)$ and mapping $\mathrm{M}(\cdot)$

$$
q_{j}:=\mathbf{Q}\left(x_{j}\right)=\mathbf{M} \circ \mathbf{N}\left(x_{j}\right) .
$$

Mapping: convert normalized tensors to low-bit integers.
Given a predefined map $\mathbf{T}:\left[0,2^{b}-1\right] \cap Z \rightarrow[0,1]$

$$
q_{j}:=\mathbf{M}\left(n_{j}\right)=\arg \min _{0 \leq i<2^{b}}\left|n_{j}-\mathbf{T}(i)\right| .
$$

Mapping gives nonlinearity to quantization. The design of \mathbf{T} is crucial as it could effectively mitigate quantization error.

Quantization

Quantization Mapping: Linear and DE (dynamic exponent)

Figure 32: Visualization of the quantization mappings for the linear and dynamic exponent at 4-bit precision. Left: Signed case. Right: Unsigned case.
Notation: We use Norm./Map. to denote quantization methods, e.g., B2048/DE

Compressing First Moment

Observation: complicated outlier patterns

Figure 2: Outlier patterns vary across two first moment tensors. (a): outliers lie in fixed rows (dimension 0). (b): outliers lie in fixed columns (dimension 1).

Compressing First Moment

Smaller block size of 128 consistently (i.e., B128/DE)

enhance performance and keep overhead under control

Figure 1: Visualization of the first moment in the layers.3.blocks.1.mlp.fc1 layer in a Swin-T model. (a): Magnitude of the first moment. (b): Histogram of the first moment. (c): Moment approximated by B128/DE.
(d): Moment approximated by B2048/DE.

Compressing Second Moment

Main bottleneck: zero-point problem
Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash:

$$
\operatorname{Adam}\left(\mathbf{w}_{t-1}, \mathbf{m}_{t-1}, \mathbf{v}_{t-1}, \mathbf{g}_{t}\right)= \begin{cases}\mathbf{m}_{t}=\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\ \mathbf{v}_{t}=\beta_{2} \mathbf{v}_{t-1}+\left(1-\beta_{2}\right) \mathbf{g}_{t}^{2} \\ \hat{\mathbf{m}}_{t} & =\mathbf{m}_{t} /\left(1-\beta_{1}^{t}\right) \\ \hat{\mathbf{v}}_{t} & =\mathbf{v}_{t} /\left(1-\beta_{2}^{t}\right) \\ \mathbf{w}_{t} & =\mathbf{w}_{t-1}-\eta \cdot \hat{\mathbf{m}}_{t} /\left(\sqrt{\hat{\mathbf{v}}_{t}}+\epsilon\right)\end{cases}
$$

Figure 3: Histogram of the inverse square root of second moment. (a) full-precision; (b) quantized with $\mathrm{B} 128 / \mathrm{DE}$; (c) quantized with B128/DE-0. All figures are at $\log 10$ scale and y -axis represents density.

Compressing Second Moment

Main bottleneck: zero-point problem
Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash:
$\operatorname{Adam}\left(\mathbf{w}_{t-1}, \mathbf{m}_{t-1}, \mathbf{v}_{t-1}, \mathbf{g}_{t}\right)= \begin{cases}\mathbf{m}_{t}=\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\ \mathbf{v}_{t} & =\beta_{2} \mathbf{v}_{t-1}+\left(1-\beta_{2}\right) \mathbf{g}_{t}^{2} \\ \hat{\mathbf{m}}_{t} & =\mathbf{m}_{t} /\left(1-\beta_{1}^{t}\right) \\ \hat{\mathbf{v}}_{t} & =\mathbf{v}_{t} /\left(1-\beta_{2}^{t}\right) \\ \mathbf{w}_{t} & =\mathbf{w}_{t-1}-\eta \cdot \hat{\mathbf{m}}_{t} /\left(\sqrt{\hat{\mathbf{v}}_{t}}+\epsilon\right)\end{cases}$

Approach:

1. remove zero in quantization map
2. factorization

Figure 3: Histogram of the inverse square root of second moment. (a) full-precision; (b) quantized with B128/DE; (c) quantized with B128/DE-0. All figures are at $\log 10$ scale and y -axis represents density.

Compressing Second Moment

New normalization method: rank-1 normalization

Compressing Second Moment

Ablation Experiments

Table 1: Ablation analysis of 4-bit optimizers on the second moment on the GPT-2 Medium E2E-NLG finetuning task. The first line barely turns 8-bit Adam [15] into 4-bit, i.e. B2048/DE for both first and second moments. We only vary the quantization scheme for second moment. SR=stochastic rounding (see App. E. 3 for details). Stable Embedding layers are not quantized. 32-bit AdamW achieves a BLEU of 67.7.

Normalization	Mapping	Stable Embed.*	Factorized	Unstable(\%)	BLEU
B2048	DE	x	x	33	66.6 ± 0.61
B2048	DE	\checkmark	X	0	66.9 ± 0.52
B128	DE	x	x	66	$65.7 \pm$ N/A
B128	DE+SR*	x	x	33	65.4 ± 0.02
B128	DE	\checkmark	x	0	67.2 ± 1.13
B2048	DE-0	x	x	0	67.5 ± 0.97
B2048	DE-0	\checkmark	x	0	67.1 ± 1.02
B128	DE-0	x	x	0	67.4 ± 0.59
Rank-1	DE-0	x	x	0	67.5 ± 0.58
Rank-1	Linear	x	x	0	67.8 ± 0.51
Rank-1	Linear	x	\checkmark	0	67.6 ± 0.33

Experiments: Accuracy I

lossless on all fine-tuning tasks and comparable on pretraining tasks

Table 2: Performance on language and vision tasks. Metric: NLU=Mean Accuracy/Correlation. CLS=Accuracy. NLG=BLEU. $\mathrm{QA}=\mathrm{F} 1 . \mathrm{MT}=$ SacreBleu. ${ }^{\dagger}$: do not quantize optimizer states for embedding layers; ${ }^{\ddagger}$: $\beta_{1}=0$. See more results in App. A.

O	NLU RoBERTa-L	CLS Swin-T	NLG GPT-2 M	QA RoBERTa-L	MT Transformer
32-bit AdamW	88.9 ± 0.01	81.2 ± 0.05	67.7 ± 0.67	94.6 ± 0.13	26.61 ± 0.08
32-bit Adafactor	89.1 ± 0.00	80.0 ± 0.03	67.2 ± 0.81	94.6 ± 0.14	26.52 ± 0.02
32-bit Adafactor ${ }^{\ddagger}$	89.3 ± 0.00	79.5 ± 0.05	67.2 ± 0.63	94.7 ± 0.10	26.45 ± 0.16
32-bit SM3	87.5 ± 0.00	79.0 ± 0.03	66.9 ± 0.58	91.7 ± 0.29	22.72 ± 0.09
8-bit AdamW ${ }^{\dagger}$	89.1 ± 0.00	81.0 ± 0.01	67.5 ± 0.87	94.5 ± 0.04	26.66 ± 0.10
4-bit AdamW (ours)	89.1 ± 0.01	80.8 ± 0.02	67.8 ± 0.51	94.5 ± 0.10	26.28 ± 0.05
4-bit Factor (ours)	88.9 ± 0.00	80.9 ± 0.06	67.6 ± 0.33	94.6 ± 0.20	26.45 ± 0.05

Experiments: Accuracy II

performant on instruction fine-tuning tasks across model sizes

Table 3: Performance on LLaMA fine-tuning on MMLU and commonsense reasoning tasks across different sizes.

Model	Optimizer	MMLU (5-shot)	HellaSwag	ARC-e	ARC-c	OBQA
LLaMA-7B	Original	32-bit AdamW	33.1	73.0	52.4	40.9
	4-bit AdamW	38.9	74.6	61.5	45.1	43.4
	Original	47.4	74.7	61.2	44.4	43.0
	LLaMA-13B	32-bit AdamW	46.5	78.8	59.8	44.5
	4-bit AdamW	47.4	79.0	64.6	48.3	45.0
	Original	54.9	79.3	58.9	45.0	45.2
LLaMA-33B	32-bit AdamW	56.4	79.2	62.6	47.1	42.2
	4-bit AdamW	54.9	79.2	61.6	46.6	45.4

Experiments: Efficiency

Memory and Time with different optimizers

Table 4: Memory and Time of 4-bit optimizers compared with 32-bit AdamW and 8-bit Adam [15].

Task	Optimizer	Time	Total Mem.	Saved Mem.
LLaMA-7B	32-bit AdamW	3.35 h	75.40 GB	$0.00 \mathrm{~GB}(0 \%)$
	4-bit AdamW	3.07 h	31.87 GB	43.54 GB (57.7\%)
	4-bit AdamW (fused)	3.11 h	31.88 GB	43.53 GB (57.7%)
RoBERTa-L	32-bit AdamW	3.93 min	5.31 GB	0.00 GB (0\%)
	8-bit AdamW	3.38 min	3.34 GB	1.97 GB (37.1\%)
	4-bit AdamW	5.59 min	3.02 GB	2.29 GB (43.1\%)
	4-bit AdamW (fused)	3.17 min	3.00 GB	2.31 GB (43.5\%)
	4-bit Factor	4.97 min	2.83 GB	2.48 GB (46.7\%)
GPT-2 Medium	32-bit AdamW	2.13 h	6.89 GB	0.00 GB (0\%)
	8 -bit AdamW	2.04 h	4.92 GB	1.97 GB (28.6\%)
	4-bit AdamW	2.43 h	4.62 GB	2.37 GB (34.4\%)
	4-bit AdamW (fused)	2.11 h	4.62 GB	2.37 GB (34.4\%)
	4-bit Factor	2.30 h	4.44 GB	2.45 GB (35.6\%)

Summary

- We propose 4-bit AdamW and 4-bit Factor with quantization and factorization
- We evaluate our 4-bit optimizers on a wide range of tasks to showcase the effectiveness and efficiency
- Code released at: https://github.com/thu-ml/low-bit-optimizers

