

Truncated Affinity Maximization: Oneclass Homophily Modeling for Graph Anomaly Detection

Hezhe Qiao, Guansong Pang

Singapore Management University

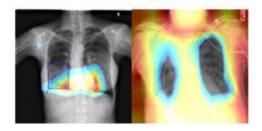
NeurIPS2023@New Orleans, USA

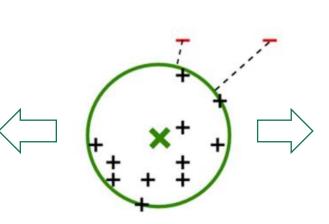
12 Decemeber, 2023

Background What are anomalies?

Anomalies (outliers, novelties): Samples that are significantly different from the most of the data

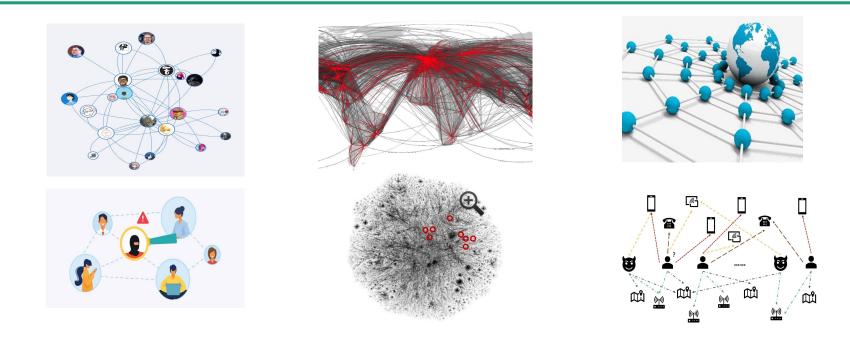






Background

Graph Anomaly Detection (GAD), which aims to identify rare observations in graphs, has attracted more attention nowadays



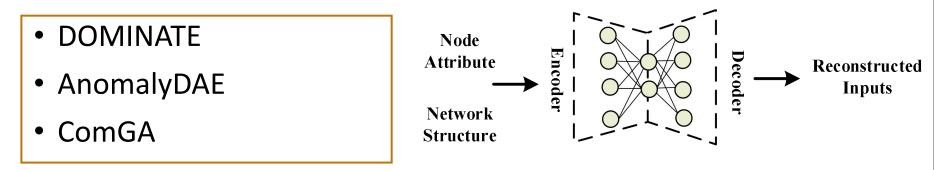
Social network

Bank transaction

Web client-server

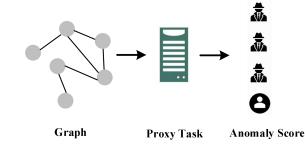
Related Work

Data Reconstruction-based Approach



- Self-supervised Approach
 - CoLA
 - SL-GAD
 - HCM-A

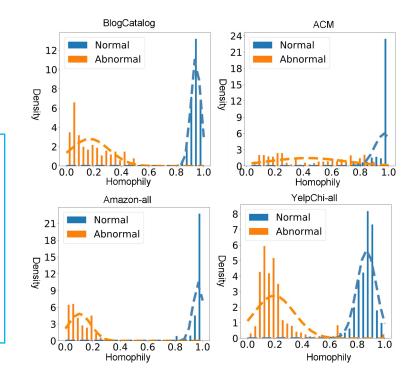
Proxy classification or contrastive learning task



Motivation(1/2)

One-class homophily

Normal nodes tend to have strong connection/affinity with each other, while the homophily in abnormal nodes is significantly weaker than normal nodes

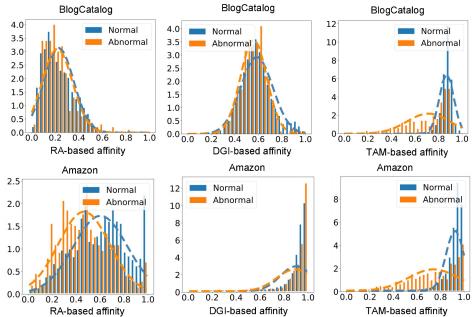


This anomaly-discriminative property is ignored by existing GAD such as data reconstruction, self-supervised training.

Motivation(2/2)

Optimizing on the original graph structure can be biased by non-homophily edges (i.e., edges connecting normal and abnormal nodes).

- Irrelevant attributes and camouflage
- Normal and abnormal nodes are oversmoothing



Problem Statement

• Purpose

Given a graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ learn a score function $f : \mathcal{V} \mapsto y_i \in \mathbb{R}$

$$y_i = \begin{cases} 1 & f(v_i) \ge \lambda \\ 0 & otherwise \end{cases}$$

where y_i denotes the label of sample with 0 being the normal class and 1 the anomalous class.

• Evaluation AUROC, AUPRC

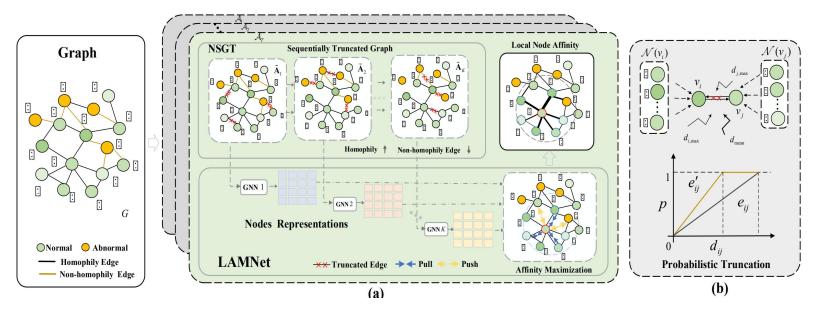
Local Node Affinity as Anomaly Measure One-class homophily $f_{TAM}(v_i;\Theta, \mathbf{A}, \mathbf{X}) = -\frac{1}{|\mathcal{N}(v_i)|} \sum_{v_i \in \mathcal{N}(v_i)} \sin(\mathbf{h}_i, \mathbf{h}_j) \quad \sin(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$

A new perspective to quantify the **normality/abnormality of nodes**, enabling a much simpler anomaly scoring than existing popular measures such as the **reconstruction error**

$$f(\mathbf{v}_i) = (1 - \alpha) \left\| \mathbf{a}_i - \hat{\mathbf{a}}_i \right\|_2 + \alpha \left\| \mathbf{x}_i - \hat{\mathbf{x}}_i \right\|_2$$

Methodolgy

Our TAM Framework



□Local Affinity Maximization on Graph □Normal Structure-preserved Graph Truncation

Local Affinity Maximization Networks (LAMNet)

• Obtain the embedding of nodes

$$\mathbf{H}_{i}^{(l)} = GNN(\mathbf{A}, \mathbf{H}_{i}^{(l-1)}; \mathbf{W}^{(l-1)}) \qquad \mathbf{H}^{(\ell)} = \phi \left(\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell-1)} \right)$$

Affinity maxmization objective function

Maximizing the local affinity Regularization term

$$\min_{\Theta} \sum_{v_i \in \mathcal{V}} \left(f_{TAM}\left(v_i; \Theta, \mathbf{A}, \mathbf{X}\right) + \lambda \frac{1}{|\mathcal{V} \setminus \mathcal{N}\left(v_i\right)|} \sum_{v_k \in \mathcal{V} \setminus \mathcal{N}\left(v_i\right)} \sin\left(\mathbf{h}_i, \mathbf{h}_k\right) \right)$$

The optimization can be largely biased by non-homophily edges

Normal Structure-preserved Graph Truncation (NSGT)

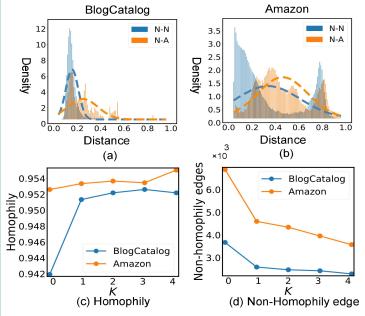
NSGT takes a probabilistic approach and performs the graph truncation

$$r_{i} = rand(d_{\text{mean}}, d_{i,\text{max}})$$
$$e_{ij} \leftarrow 0 \text{ iff } d_{ij} > r_{i} \text{ and } d_{ij} > r_{j}, \forall e_{ij} = 1$$

$$p(r_i < d_{ij}) = \frac{\max(d_{ij} - d_{\text{mean}}, 0)}{d_{i,\text{max}} - d_{\text{mean}}}$$

It is considered as a non-homophily edge and removed if and only if the distance between node v_i and v_j

$$p\left(\mathcal{E} \setminus e_{ij}\right) = p\left(r_i < d_{ij}\right) p\left(r_j < d_{ij}\right)$$



(a) and (b) are respectively the Euclidean distance statistic N-N and N-A (c) Homophily of normal nodes vs. (d) the number of nonhomophily edges with increasing truncation iterations/depths

Training

NSGT performs a sequentially iterative truncation rather than a single-pass truncation.

How do we know which step is optimal?

We train a LAMNet on each of the *K* sequentially truncated adjacency matrices in *A*, resulting in K LAMNets parameterized by $\{\Theta_1, \Theta_2, \dots, \Theta_K\}$ for various truncation depths.

$$\mathcal{E}_{i+1} \subset \mathcal{E}_i \qquad \mathcal{A} = \left\{ \widetilde{\mathbf{A}}_1, \widetilde{\mathbf{A}}_2, \cdots, \widetilde{\mathbf{A}}_K \right\} \qquad \mathbf{H}^{(\ell)} = \phi \left(\mathbf{D}^{-\frac{1}{2}} \widetilde{\mathbf{A}}_k \mathbf{D}^{-\frac{1}{2}} \mathbf{H}^{(\ell-1)} \mathbf{W}^{(\ell-1)} \right)$$

We perform NSGT T times independently, resulting in T sets of the truncated adjacency matrix set $T \times K \text{ LAMNets}$

Inference - Anomaly Scoring

Local node affinity-based anomaly score

score
$$(v_i) = \frac{1}{T \times K} \sum_{t=1}^{T} \sum_{k=1}^{K} f_{TAM} \left(v_i; \Theta_{t,k}^*, \mathbf{A}, \mathbf{X}\right)$$

Local affinity score calculation based on the original structure

The weaker the local node affinity in the representation under various graph truncation scales, the larger the anomaly score the node v_i has

Experiments

DatasetReal-world and large-scale GAD datasets

Datasets	Туре	R\I	Node	Edge	Attribute	Anomaly
BlogCatalog	Soical Network	I	5,196	171,743	8,189	5.77%
ACM	Citation Network	I	16,484	71,980	8,337	3.67%
Amazon	Co-review	R	11,944	175,608	25	6.66%
Facebook	Co-review	R	4,039	88,234	576	0.67%
Reddit	Social Network	R	10,984	175,608	64	3.33%
YelpChi	Transaction Record	R	45,954	49,315	32	2.65%
Amazon-all	Co-review	R	11,944	4,398,392	25	9.50%
YelpChi-all	Transaction Record	R	45,954	3,846,979	32	14.50%
T-Finance	Transaction Record	R	39,357	21,222,543	10	4.6%
OGB-protein	Biology Network		10,984	168,016	64	3.3%

Performance Evaluation : Comparing to the state-ofthe-art

Table 1: AUROC and AUPRC results on six real-world GAD datasets with injected/real anomalies.

	-		S	Da	4 4		
Metric	Method				taset		
metric	internou	BlogCatalog	ACM	Amazon	Facebook	Reddit	YelpChi
	iForest	$0.3765_{\pm 0.019}$	$0.5118_{\pm 0.018}$	$0.5621_{\pm 0.008}$	$0.5382_{\pm 0.015}$	$0.4363_{\pm 0.020}$	$0.4120_{\pm 0.040}$
	ANOMALOUS	$0.5652_{\pm 0.025}$	$0.6856_{\pm 0.063}$	$0.4457_{\pm 0.003}$	0.9021 ± 0.005	$0.5387_{\pm 0.012}$	0.4956 ± 0.003
	DOMINANT	$0.7590_{\pm 0.010}$	0.8569 ± 0.020	0.5996 ± 0.004	$0.5677_{\pm 0.002}$	$0.5555_{\pm 0.011}$	$0.4133_{\pm 0.010}$
AUROC	CoLA	$0.7746_{\pm 0.009}$	$0.8233_{\pm 0.001}$	$0.5898_{\pm 0.008}$	$0.8434_{\pm 0.011}$	$0.6028_{\pm 0.007}$	$0.4636_{\pm 0.001}$
AUROC	SL-GAD	0.8123 ± 0.002	$0.8479_{\pm 0.005}$	$0.5937_{\pm 0.011}$	$0.7936_{\pm 0.005}$	$0.5677_{\pm 0.005}$	$0.3312_{\pm 0.035}$
	HCM-A	$0.7980_{\pm 0.004}$	$0.8060_{\pm 0.004}$	$0.3956_{\pm 0.014}$	$0.7387_{\pm 0.032}$	0.4593 ± 0.011	$0.4593 _{\pm 0.005}$
	ComGA	$0.7683_{\pm 0.004}$	$0.8221_{\pm 0.025}$	$0.5895_{\pm 0.008}$	$0.6055_{\pm 0.000}$	$0.5453_{\pm 0.003}$	$0.4391 _{\pm 0.000}$
	TAM (Ours)	$0.8248_{\pm 0.003}$	$0.8878_{\pm 0.024}$	$0.7064_{\pm 0.010}$	$0.9144_{\pm 0.008}$	0.6023 ± 0.004	$0.5643_{\pm 0.007}$
	iForest	$0.0423_{\pm 0.002}$	$0.0372_{\pm 0.001}$	$0.1371_{\pm 0.002}$	$0.0316_{\pm 0.003}$	$0.0269_{\pm 0.001}$	$0.0409_{\pm 0.000}$
	ANOMALOUS	$0.0652_{\pm 0.005}$	$0.0635_{\pm 0.006}$	$0.0558_{\pm 0.001}$	$0.1898 _{\pm 0.004}$	$0.0375_{\pm 0.004}$	0.0519 ± 0.002
	DOMINANT	$0.3102_{\pm 0.011}$	0.4402 ± 0.036	$0.1424_{\pm 0.002}$	$0.0314_{\pm 0.041}$	$0.0356_{\pm 0.002}$	$0.0395 _{\pm 0.020}$
AUPRC	CoLA	$0.3270_{\pm 0.000}$	$0.3235_{\pm 0.017}$	$0.0677_{\pm 0.001}$	0.2106 ± 0.017	$0.0449_{\pm 0.002}$	$0.0448_{\pm 0.002}$
AUFIC	SL-GAD	0.3882 ± 0.007	$0.3784 _{\pm 0.011}$	$0.0634_{\pm 0.005}$	$0.1316 _{\pm 0.020}$	$0.0406_{\pm 0.004}$	$0.0350_{\pm 0.000}$
	HCM-A	$0.3139_{\pm 0.001}$	$0.3413 _{\pm 0.004}$	$0.0527_{\pm 0.015}$	0.0713 ± 0.004	$0.0287 _{\pm 0.005}$	$0.0287 _{\pm 0.012}$
	ComGA	$0.3293_{\pm 0.028}$	$0.2873 _{\pm 0.012}$	$0.1153 _{\pm 0.005}$	$0.0354 _{\pm 0.001}$	$0.0374_{\pm 0.001}$	$0.0423 _{\pm 0.000}$
	TAM (Ours)	$0.4182_{\pm 0.005}$	$0.5124_{\pm 0.018}$	$0.2634_{\pm 0.008}$	$0.2233_{\pm 0.016}$	$\underline{0.0446}_{\pm 0.001}$	0.0778 ± 0.009

Performance Evaluation: Large-scale graph

Table2 : Results on large-scale graphs

Metric	Method	Dataset							
Metric	Method	Amazon-all	YelpChi-all	T-Finance	OGB-Proteins				
	DOMINANT	0.6937	0.5390	0.5380	0.7267				
AUROC	ComGA	0.7154	0.5352	0.5542	0.7134				
	CoLA	0.2614	0.4801	0.4829	0.7142				
	SL-GAD	0.2728	0.5551	0.4648	0.7371				
	TAM	0.8476	0.5818	0.6175	0.7449				
	DOMINANT	0.1015	0.1638	0.0474	0.2217				
	ComGA	0.1854	0.1658	0.0481	0.1554				
AUPRC	CoLA	0.0516	0.1361	0.0410	0.1349				
	SL-GAD	0.0444	0.1711	0.0386	0.1771				
	TAM	0.4346	0.1886	0.0547	0.2173				

TAM can perform consistently well on these large-scale datasets and outperforms four comparing methods including reconstruction-based and contrastive-based methods

It further shows **anomaly-discriminative property** can be well utilized effectively in TAM.

Performance Evaluation: Structural and contexual anomaly

Table 3: AUROC and AUPRC results of detecting structural and contextual anomalies.

		Dataset						
Metric	Method	Blog	Catalog	ACM				
		Structural	Contextual	Structural	Contextual			
AUROC	DOMINANT	0.5769	0.9591	0.6533	0.9506			
	CoLA	0.6524	0.8867	0.7468	0.9200			
	SL-GAD	0.5853	0.9754	0.7354	0.9878			
	TAM	0.6819	0.9627	0.7902	0.9534			
	DOMINANT	0.0567	0.4369	0.0452	0.5049			
AUPRC	CoLA	0.0370	0.6298	0.0381	0.6166			
	SL-GAD	0.0359	0.4776	0.0314	0.3083			
	TAM	0.0570	0.6308	0.0568	0.7126			

Compared to contextual anomalies, it is significantly more challenging to detect structural anomalies, for which TAM outperforms all three methods in both AUROC and AUPRC

Performance Evaluation: TAM vs. Raw/Generic Node Representation Space

□ Raw Attribute (RA)

- Deep Graph InfoMax
- Graph Mutual Information Maximization

Table 4: Using local node affinity on raw attributes (RA) and learned representation spaces.

Madaila	Mathad	Dataset							
Metric	Method	BlogCatalog	ACM	Amazon	Facebook	Reddit	YelpChi		
	RA	0.5324	0.7520	0.6722	0.4176	0.5794	0.3331		
AUROC	DGI	0.5647	0.7823	0.4979	0.8647	0.5489	0.5254		
	GMI	0.5880	0.7985	0.4438	0.8594	0.4503	OOM		
	TAM (Ours)	0.8238	0.8878	0.7064	0.9065	0.5923	0.5541		
	RA	0.0652	0.1399	0.1237	0.0193	0.0526	0.0348		
AUPRC	DGI	0.0662	0.1991	0.0719	0.1260	0.0398	0.0551		
	GMI	0.0748	0.2251	0.0578	0.1108	0.0281	OOM		
	TAM (Ours)	0.4178	0.5124	0.2541	0.2362	0.0446	0.0778		

AL

AUPRC

LAMNet

RTA

DOM

LAMNet

0.8248

0.3329

0.3115

0.4182

Performance Evaluation : Comparing to the alternative approaches

0.5923

0.0437

0.0466

0.0450

0.9144

0.1212

0.1506

0.2233

0.5643

0.0615

0.0538

0.0766

Metric	Method	and the second second	Dataset						
Metric	Method	BlogCatalog	ACM	Amazon	Facebook	Reddit	YelpChi		
	RG	0.6728	0.7511	0.4763	0.8186	0.5575	0.4943		
AUROC	ED	0.5678	0.7162	0.4574	0.8641	0.5641	0.5014		
	SC	0.6650	0.8668	0.5856	0.6951	0.6007	0.4910		
	NSGT	0.8235	0.8830	0.7120	0.9105	0.5938	0.5449		
	RG	0.1849	0.1145	0.0619	0.0808	0.0385	0.0530		
AUPRC	ED	0.1229	0.1876	0.0669	0.1204	0.0417	0.0519		
	SC	0.1621	0.5109	0.0924	0.0410	0.0467	0.0598		
	NSGT	0.4150	0.5152	0.2555	0.2200	0.0449	0.0775		

Table	5:	NSGT	vs.	RG	and	ED.	
				-			_

- **Raw Graph (RG)** performs affinity maximization on the original graph structure without any graph truncation
- **Drop (ED)** randomly drops some edges (5% edges by default)
- Similarity Cut (SC) (removing 5% least similar edges).

calculates the local affinity-based anomaly scores after NSGT

DOM performs LAMNet but with our affinity maximization objective replaced by the reconstruction loss used in DOMINANT

Table 6: LAMNet vs. RTA and DOM.									
letric	Method	BlogCatalog	1011	Datas	set	D 114	VI CI		
	1	BlogCatalog	ACM	Amazon	Facebook	Reddit	YelpChi		
	RIA	0.7497	0.8043	0.6256	0.8161	0.5783	0.5118		
UROC	DOM	0.7642	0.8679	0.5169	0.7793	0.5863	0.5154		

0.2698

0.4525

0.8878 0.7064

0.5124 0.2630

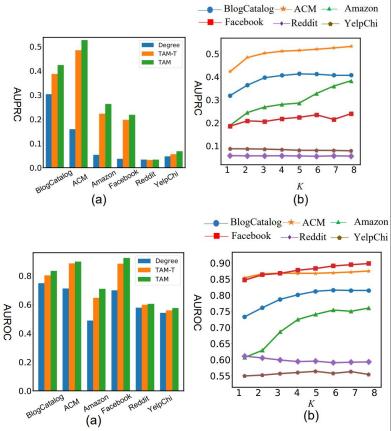
0.1195

0.1517

Performance Evaluation : Comparing different anomaly scoring and truncation

- □ TAM-T calculates the node affinity on the truncated graph structure rather than the primary graph structure as in TAM
- Degree directly uses results w.r.t. graph truncation depth K. the node degree after our graph truncation as anomaly score

Aggregating the anomaly scores helps largely improve the detection performance



Limitation

Primarily Isolated Node

TAM cannot directly handle primarily isolated nodes in a graph, though those isolated nodes are clearly abnormal if they are rare and the other nodes are connected to at least some nodes

Memory

TAM may require a large memory to perform on graphs with a very large node/edge set.

Anomaly Dense Block

Datasets with strong heterophily relations/subgraphs of normal nodes

Conclusions and Future Work

We utilize this property to introduce a novel unsupervised GAD measure, local node affinity, and further introduce a truncated affinity maximization (TAM) approach that end-to-end optimizes the proposed anomaly measure on truncated adjacency matrix with the non-homophily edges eliminated.

Work to be done . . .

Make it adapt to more large-scale datasets and more complex experimental setting.