

FedGCN: Convergence-Communication Tradeoffs in Federated Training of Graph Convolutional Networks

Presenter: Yuhang Yao Author: Yuhang Yao, Weizhao Jin, Srivatsan Ravi, Carlee Joe-Wong

Federated Node Classification

Nodes in a graph are partitioned across clients (e.g. private data across countries)
 Cross-client edges exist between nodes at different clients

Node classification requires node features stored in other clients

Limitation of Distributed Training

Ignore cross-client edges Send features and intermediate output at every round Client k + 1Client k-1Client k + 1Client k-1Local Graph Local Graph Local Graph Local Graph Client k Client k Or ocal Graph Local Graph Ignoring cross-client edges causes Sending features requires

huge communication cost

[1] He, Chaoyang, et al. "Fedgraphnn: A federated learning system and benchmark for graph neural networks." arXiv preprint arXiv:2104.07145 (2021). [2] Wan, Cheng, et al. "BDS-GCN: Efficient full-graph training of graph convolutional nets with partition-parallelism and boundary sampling." (2020).

information loss

Carnegie

University

Mellon

GCN in Federated Learning

In FL setting, nodes are stored in different clients For each layer l

Node *i* in client c(i) needs to aggregate information of nodes from c(i) and other

clients

Input Graph

Different color represents belonging of clients

sents
$$oldsymbol{h}_i^{(l+1)} = \phi\left(\sum_{j \in \mathcal{N}_i} A_{ij} oldsymbol{h}_j^{(l)} W_{c(i)}^{(l)}
ight)$$

 $h_{1}^{(l+1)} 1 \underbrace{ \begin{array}{c} & & \\ & &$

 A_{ij} : Weight of connections between node *i* and node *j* $h_i^{(l)}$: Output of node *i* at layer *l* $c_{(i)}$: index of the client that contains node *i* $W_{c(i)}^{(l)}$: Parameters of GCN at layer *l* at client $c_{(i)}$ $h_i^{(0)} = x_i$: Feature vector of node *i* at layer 0

Feature Aggregation Instead of Sending Features

Send features and intermediate output at every training round

Send feature aggregations at initial round

Server Aggregation Instead of Clients Aggregation

Clients Aggregation

 $\{\sum_{j\in\mathcal{N}_i} \mathbb{I}_z(c(j))A_{ij}\boldsymbol{x}_j\}_{z\in[K]}$

Server Aggregation

Secure Neighbor Feature Aggregation

To guarantee privacy during the aggregation process of accumulated features, we leverage Fully Homomorphic Encryption (FHE)

$$\left[\left[\sum_{j \in \mathcal{N}_i} A_{ij} \boldsymbol{x}_j \right] \right] = \sum_{k=1}^K \left[\left[\sum_{j \in \mathcal{N}_i} \mathbb{I}_k(c(j)) \cdot A_{ij} \boldsymbol{x}_j \right] \right]$$

- 1. All clients agree on and initialize a FHE keypair
- 2. Each client encrypts the local neighbor feature array and sends it to the server
- 3. Upon receiving all encrypted neighbor feature arrays from clients, the server performs secure neighbor feature aggregation

FedGCN with Three Types of Communication

- > **No Communication(0-hop)**: Use feature aggregation at the same client
- 1-hop Communication: Communicate feature aggregation of 1-hop neighbors at all clients
- 2-hop Communication: Communicate feature aggregation of 2-hop neighbors at all clients and perform the aggregation of L-layer GCNs

More hop means higher communication costs but with less information loss

Carnegie Mellon

University

Why Not L-hop Communication?

Adding more layers and hop communication does not increase model accuracy for \geq 3-layer GCN layers and \geq 2-hop communication

Carnegie Mellon

University

Training Process of FedGCN

Communication at initial round

Normal federated training process

```
Algorithm 1 FedGCN Federated Training for Graph Convolutional Network
// Pre-Training Communication Round
for each client k \in [K] do in parallel
     Send [[\{\sum_{i \in \mathcal{N}_i} \mathbb{I}_k(c(j)) \cdot \hat{A}_{ij} x_j\}_{i \in \mathcal{V}_k}]] to the server
end
// Server Operation
for i \in \mathcal{V} do in parallel
     \llbracket \sum_{j \in \mathcal{N}_i} \boldsymbol{A}_{ij} \boldsymbol{x}_j \rrbracket = \sum_{d=1}^C \llbracket \sum_{j \in \mathcal{N}_i} \mathbb{I}_k(c(j)) \cdot \boldsymbol{A}_{ij} \boldsymbol{x}_j \rrbracket
end
for each client k \in [K] do in parallel
      if 1-hop then
            Receive [\{\sum_{j \in \mathcal{N}_i} A_{ij} x_j\}_{i \in \mathcal{V}_k}] and decrypt it
      end
      if 2-hop then
            Receive [\{\sum_{j \in \mathcal{N}_i} A_{ij} x_j\}_{i \in \mathcal{N}_{\mathcal{V}_i}}] and decrypt it
     end
end
// Training Rounds
for t = 1, \ldots, T do
      for each client k \in [K] do in parallel
            Receive \llbracket \boldsymbol{w}^{(t)} \rrbracket and decrypt it
              Set w_{L}^{(t,0)} = w^{(t)},
              for e = 1, \ldots, E do
                 \overline{\operatorname{Set}\,\boldsymbol{g}_{\boldsymbol{w}_k}^{(t,e)} = \nabla_{\boldsymbol{w}_k} f_k(\boldsymbol{w}_k^{(t,e-1)};\mathcal{G}_k)}
                         m{w}_k^{(t,e)} = m{w}_k^{(t,e-1)} - \eta \ m{g}_{m{w}_k}^{(t,e)} // Update Parameters
            end
            Send [\boldsymbol{w}_{k}^{(t,E)}] to the server
      end
     // Server Operations
      \llbracket oldsymbol{w}^{(t+1)}
rbracket = rac{1}{K}\sum_{d=1}^C \llbracket oldsymbol{w}^{(t,E)}_k
rbracket // Update Global Models
      Broadcast \llbracket \boldsymbol{w}^{(t+1)} \rrbracket to local clients
end
```

Carnegie Mellon University

Convergence Rate

First theoretical analysis on the convergence rate of FGL with cross-client edges

	Non-i.i.d.	i.i.d.
0-hop	$(1 - \frac{1}{K^4}) \frac{N^5}{C^5} \ B^4\ + (1 - \frac{1}{C})^{\frac{5}{2}} (1 - p)^5$	$(1-rac{1}{K^4})rac{N^5}{C^5}\ B^4\ $
1-hop	$igg (1 - rac{1}{K^4} (1 + c_lpha p + c_\mu)^2) rac{N^5}{C^5} \ B^4\ + (1 - rac{1}{C})^{rac{5}{2}} (1 - p)^5$	$(1-rac{1}{K^4}(1+c_lpha+c_\mu)^2)rac{N^5}{C^5}\ B^4\ $
2-hop	$ (1-rac{1}{K^4}(1+c_lpha p+c_\mu)^6)rac{N^5}{C^5} B^4 +(1-rac{1}{C})^{rac{5}{2}}(1-p)^5 B^4 $	$(1 - rac{1}{K^4}(1 + c_lpha + c_\mu)^6)rac{N^5}{C^5} \ B^4\ $

- Faster convergence with more communication hops
- More hops are needed for cross-device FL
- One-hop is sufficient for cross-silo FL

Carnegie Mellon University

Empirical Validation

- Faster convergence with more communication hops
- More hops are needed for cross-device FL
- One-hop is sufficient for cross-silo FL

Test Accuracy vs Communication Cost on OGBN-ArXiv

FedGCN (1-, and 2-hop) requires little communication with high accuracy

FedGCN (0-hop) requires much less communication but has lower accuracy

due to information loss

Carnegie Mellon

University

Test Accuracy on four datasets

	Cora, 10 clients			Citeseer, 10 clients		
Centralized GCN	0.8069±0.0065		0.6914±0.0051			
	$\beta = 1$	$\beta = 100$	$\beta = 10000$	$\beta = 1$	$\beta = 100$	$\beta = 10000$
FedGCN(0-hop)	0.6502 ± 0.0127	$0.5958 {\pm} 0.0176$	0.5992 ± 0.0226	0.617 ± 0.0118	0.5841 ± 0.0168	0.5841 ± 0.0138
BDS-GCN	0.7598 ± 0.0143	0.7467 ± 0.0117	0.7479 ± 0.018	0.6709 ± 0.0184	0.6596 ± 0.0128	0.6582 ± 0.01
FedSage+	0.8026 ± 0.0054	0.7942 ± 0.0075	0.796 ± 0.0075	0.6977 ± 0.0097	0.6856 ± 0.0121	$0.688 {\pm} 0.0086$
FedGCN(1-hop)	0.81±0.0066	0.8009 ± 0.007	0.8009 ± 0.0077	0.7006±0.0071	0.6891 ± 0.0067	0.693 ± 0.0069
FedGCN(2-hop)	0.8064 ± 0.0043	0.8084±0.0051	0.8087±0.0061	0.6933 ± 0.0067	0.6953±0.0069	0.6948±0.0032
	Ogbn-Arxiv, 10 clients					
	C	gbn-Arxiv, 10 client	ts	O	gbn-Products, 5 clier	nts
Centralized GCN	С)gbn-Arxiv, 10 client 0.7±0.0082	ts	O	gbn-Products, 5 clier 0.7058±0.0008	nts
Centralized GCN	$\beta = 1$	$\begin{array}{l} \text{Ogbn-Arxiv, 10 client} \\ 0.7 \pm 0.0082 \\ \beta = 100 \end{array}$	$\beta = 10000$	$\beta = 1$	$\begin{array}{c} \text{gbn-Products, 5 clier} \\ 0.7058 \pm 0.0008 \\ \beta = 100 \end{array}$	$\beta = 10000$
Centralized GCN FedGCN(0-hop)	$\beta = 1$ 0.5981±0.0094	$\begin{array}{l} \text{gbn-Arxiv, 10 client} \\ 0.7 \pm 0.0082 \\ \beta = 100 \\ 0.5809 \pm 0.0017 \end{array}$	ts $\beta = 10000$ 0.5804 ± 0.0015	$\beta = 1$ 0.6789±0.0031	$ \begin{array}{c} \text{gbn-Products, 5 clier} \\ 0.7058 \pm 0.0008 \\ \beta = 100 \\ 0.658 \pm 0.0008 \end{array} $	$\beta = 10000 \\ 0.658 \pm 0.0008$
Centralized GCN FedGCN(0-hop) BDS-GCN	$\beta = 1$ 0.5981±0.0094 0.6769±0.0086	$\begin{array}{l} \text{gbn-Arxiv, 10 client} \\ 0.7 \pm 0.0082 \\ \beta = 100 \\ 0.5809 \pm 0.0017 \\ 0.6689 \pm 0.0024 \end{array}$	$\beta = 10000$ 0.5804±0.0015 0.6688±0.0015	O_{2} $\beta = 1$ 0.6789 ± 0.0031 0.6996 ± 0.0019	$\begin{array}{l} \text{gbn-Products, 5 clier} \\ 0.7058 \pm 0.0008 \\ \beta = 100 \\ 0.658 \pm 0.0008 \\ \hline 0.6952 \pm 0.0012 \end{array}$	$\beta = 10000$ 0.658±0.0008 0.6952±0.0009
Centralized GCN FedGCN(0-hop) BDS-GCN FedSage+	$\beta = 1$ 0.5981±0.0094 0.6769±0.0086 0.7053±0.0073	$\begin{array}{l} \text{gbn-Arxiv, 10 client}\\ 0.7 \pm 0.0082\\ \beta = 100\\ 0.5809 \pm 0.0017\\ 0.6689 \pm 0.0024\\ 0.6921 \pm 0.0014 \end{array}$	$\beta = 10000$ 0.5804±0.0015 0.6688±0.0015 0.6918±0.0024	$\begin{array}{c} & O_{3} \\ \hline \beta = 1 \\ 0.6789 \pm 0.0031 \\ \hline 0.6996 \pm 0.0019 \\ \hline 0.7044 \pm 0.0017 \end{array}$	$ \begin{array}{l} \text{gbn-Products, 5 clier} \\ 0.7058 \pm 0.0008 \\ \hline \beta = 100 \\ 0.658 \pm 0.0008 \\ \hline 0.6952 \pm 0.0012 \\ \hline 0.7047 \pm 0.0009 \end{array} $	$\beta = 10000$ 0.658±0.0008 0.6952±0.0009 0.7051±0.0006
Centralized GCN FedGCN(0-hop) BDS-GCN FedSage+ FedGCN(1-hop)	$\beta = 1$ 0.5981±0.0094 0.6769±0.0086 0.7053±0.0073 0.7101±0.0078	β 0.7 ± 0.0082 $\beta = 100$ 0.5809 ± 0.0017 0.6689 ± 0.0024 0.6921 ± 0.0014 0.6989 ± 0.0038	ts $\beta = 10000$ 0.5804 ± 0.0015 0.6688 ± 0.0015 0.6918 ± 0.0024 0.7004 ± 0.0031	$\begin{array}{c} O_{3}\\ \hline \beta = 1\\ 0.6789 \pm 0.0031\\ \hline 0.6996 \pm 0.0019\\ \hline 0.7044 \pm 0.0017\\ \hline 0.7049 \pm 0.0016 \end{array}$	gbn-Products, 5 clien 0.7058 ± 0.0008 $\beta = 100$ 0.658 ± 0.0008 0.6952 ± 0.0012 0.7047 ± 0.0009 0.7057 ± 0.0003	$\beta = 10000$ 0.658±0.0008 0.6952±0.0009 0.7051±0.0006 0.7057±0.0004

Conclusion & Next Step

Conclusion

- Cross-client edges affect the model performance (convergence rate and test accuracy).
- Proposed FedGCN helps recover information on cross-client edges and only requires communication at the initial step
- Tradeoffs exist between convergence and communication under different data distributions.
 Next Steps
- Library development: pip install fedgraph

Distributed Trainig Code: https://github.com/yh-yao/FedGCN

Another Dataset Paper in NeurIPS: Wyze Rule: Federated Rule Dataset for Rule Recommendation Benchmarking

Carnegie

University

Mellon