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Introduction

Introduction
statistical divergence

A statistical divergence D : X ×X → R+ measures the “distance” between
probability distributions.

- non-negativity: D(p, q) ≥ 0

- identity of indiscernibles: D(p, p) = 0

statistical distance is stronger, satisfying two extra properties:

- symmetry: D(p, q) = D(q, p)

- triangle inequality: D(p, q) ≤ D(p, g) +D(g, q)
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Introduction

Introduction
Kullback-Leibler divergence

Definition 1

KL divergence The Kullback-Leibler (KL) divergence between two continuous
probability densities p(x) and q(x) is defined as

KL(p(x)||q(x)) =
∫ +∞

−∞
p(x) log

p(x)

q(x)
dx (1)

widely applied in information theory, statistics, and machine learning
Not a proper distance metric

- not symmetric: forward KL divergence KL(p||q)→ 0 when reverse
KL(q||p)→∞

- dose not satisfy the triangle inequality
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Introduction
Multivariate Gaussian Distribution

Definition 2
Multivariate Gaussian distribution The probability density function of an
n-dimensional Gaussian distribution is given by

N (µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(2)

Here µ ∈ Rn is the mean and Σ ∈ Sn
++ is the covariance matrix, where Sn

++ is
the space of symmetric positive definite n× n matrices.

one of the most important distributions

- widely used in many fields

November 12, 2023 5 / 20



Introduction

Introduction
KL divergence between multivariate Gaussian distributions

Definition 3
The KL divergence between two n-dimensional Gaussians
KL(N1(µ1,Σ1)||N2(µ2,Σ2)) has the following closed form ( Pardo 2018)

1

2

{
log
|Σ2|
|Σ1|

+ Tr(Σ
−1
2 Σ1) + (µ2 − µ1)

>
Σ
−1
2 (µ2 − µ1)− n

}
(3)

where the logarithm is taken to base e and Tr is the trace of matrix.

not symmetric and does not satisfy the triangle inequality either.

forward KL(N (µ,Σ)||N (0, I)) =
1

2

{
− log |Σ|+Tr(Σ) + µ>µ− n

}
(4)

reverse KL(N (0, I)||N (µ,Σ)) =
1

2

{
log |Σ|+Tr(Σ−1) + µ>Σ−1µ− n

}
(5)
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Introduction
Theoretical Research Questions

For any n-dimensional multivariate Gaussian distributions N1,N2 and N3

1 The approximate symmetry of small KL divergence between Gaussians:
when KL(N1||N2) ≤ ε, KL(N2||N1) ≤?

2 When KL(N1||N2) ≥M , KL(N2||N1) ≥?
3 Relaxed triangle inequality:

when KL(N1||N2) ≤ ε1, and KL(N2||N3) ≤ ε2, KL(N1||N3) <?
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Main Results

Definition

Definition 4

Lambert W Function (Lambert 1758; Corless et al. 1996). The reverse
function of function y = xex is called Lambert W function y =W (x).

When x ∈ R, W is a multivalued function with two branches W0,W−1, where W0

is the principal branch (also called branch 0) and W−1 is the branch −1.
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Main Results

Main Results
Approximate symmetry of KL divergence between Gaussians

Theorem 1
Approximate symmetry of KL divergence between Gaussians For any two
n-dimensional Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2), if
KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤ ε(ε ≥ 0), then

KL(N (µ2,Σ2)||N (µ1,Σ1))

≤1

2

(
1

−W0(−e−(1+2ε))
− log

1

−W0(−e−(1+2ε))
− 1

)
=ε+ 2ε1.5 +O(ε2) (for small ε)

The supremum is attained when the following two conditions hold.

(1) There exists only one eigenvalue λj of B−1
2 Σ1(B

−1
2 )> or B−1

1 Σ2(B
−1
1 )> equal to

−W0(−e−(1+2ε)) and all other eigenvalues λi (i 6= j) are equal to 1, where

B1 = P1D
1/2
1 , P1 is an orthogonal matrix whose columns are the eigenvectors of

Σ1, D1 = diag(λ1, . . . , λn) whose diagonal elements are the corresponding
eigenvalues, B2 is defined in the similar way as B1 except on Σ2.

(2) µ1 = µ2.
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Main Results

Approximate symmetry of KL divergence between
Gaussians
Remarks

The supremum in Theorem 1 has the following properties.

1 The supremum is small (resp. 0) when ε is small (resp. 0)

2 The supremum increases rapidly when ε > 2

3 It needs strict conditions to reach the supremum

4 The bound is independent of the dimension n. This is a critical property in
high-dimensional problems.
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Main Results

Approximate symmetry of KL divergence between
Gaussians
Toy Examples

N0(0, 1): standard Gaussian distribution (in black). Ni (1 ≤ i ≤ 4): KL(Ni||N0) = 0.01.
N1 has the maximized reverse KL divergence:

KL(N0||N1(0, 0.90173
2
)) ≈ 0.01148 ≈

1

2

(
1

−W0(−e−(1+2×0.01))
− log

1

−W0(−e−(1+2×0.01))
− 1

)
KL(N0||N2(0, 1.10161

2)) ≈ 0.00879
KL(N0||N3(0.14143, 1)) ≈ 0.01
KL(N0||N4(0.1, 1.07153

2)) ≈ 0.00892.
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Main Results

Theorem 2

For any two n-dimensional Gaussians N (µ1,Σ1) and N (µ2,Σ2), if
KL(N (µ1,Σ1)||N (µ2,Σ2)) ≥M , then

KL(N (µ2,Σ2)||N (µ1,Σ1))

≥
1

2

{
1

−W−1(−e−(1+2M))
− log

1

−W−1(−e−(1+2M))
− 1

}

Theorem 1 and Theorem 2 form a duality

- can be proved in the similar way

- deduce each other
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Main Results

Main Results
Relaxed triangle inequality

Theorem 3

Relaxed triangle inequality For any three n-dimensional Gaussians N (µ1,Σ1),
N (µ2,Σ2), and N (µ3,Σ3), if
KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤ ε1,KL(N (µ2,Σ2)||N (µ3,Σ3)) ≤ ε2, then

KL(N (µ1,Σ1)||N (µ3,Σ3)) < 3ε1 + 3ε2 + 2
√
ε1ε2 + o(ε1) + o(ε2)

The bound is also dimension-free.

�X(��||��) ≤ ��

��

��

��

�X(��||��) ≤ ��

�X(��||��) < ?
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Applications

Applications
1: Deep anomaly detection (motivating application)

Research questions:
How to detect anomaly data using flow-based models?
Theorem 1, 2, and 3 provide solid theoretical basis for deep anomaly detection method.
See1 for details.

(1) By Asm. 
1,  �X(��, ��) 
can be any large.

��

��

��

��

(2) By Theorem 1, 
diffeomorphism 

preserves KL 
divergence. ��

�

(4) By Asm. 2, 
�X(��, ��

�) is 
trained to be 
small.

(5) By 
Theorem 3, 
�X(��

�，��) 
is large.

(3) �X(��, ��)
can be any large.

distributions 
in data space

distributions
 in latent space

flow-based model
� = �(�)

��
�

distribution of
OOD data

distribution of 
ID representations 

distribution of
OOD representations 

prior
model 
induced
distribution

(6) By 
Theorem 2, 
�X(��，��

�) 
is large.

distribution of ID 
data

1Yufeng Zhang et al. (2023). “Kullback-Leibler Divergence-Based Out-of-Distribution Detection with Flow-Based Generative Models”. In: IEEE
Transactions on Knowledge and Data Engineering, pp. 1–14. doi: 10.1109/TKDE.2023.3309853.
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Applications

Applications
Approximate Symmetry of Small KL divergence

How Theorem 1 can help us?

1 Minimizing one of forward and reverse KL divergences also bounds another.

2 We can exchange forward and reverse KL divergences for small ε.

Applications:

1 Extending theoretical guarantee for discrete policies to continuous
Gaussian policy in offline reinforcement learning. See (Nair et al. 2021).

2 Bridging research on sample complexity of learning Gaussian
distributions. Current work derive sample complexity using forward and
reverse KL divergence separately. We can eliminate such difference. See
(Ashtiani et al. 2020; Bhattacharyya et al. 2022).

3 Bringing new insights to existing reinforcement learning algorithm. We
can exchange forward and reverse KL divergence in MPO algorithm. See
(Abdolmaleki et al. 2018).
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Applications

Applications
Relaxed Triangle Inequality

The relaxed triangle inequality (Theorem 3) can extend one-step robustness
guarantee to multiple steps for safe reinforcement learning (Liu et al. 2022).
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Related Work

Related Work

- No existing work focus on the similar properties of KL divergence between
Gaussians

- estimation of divergences
Wang, Kulkarni, and Verdu 2009; Nguyen, Wainwright, and Jordan 2010;
Moon and Hero 2014; Rubenstein et al. 2019

- other divergences in different contexts
Gulrajani et al. 2017; Donnat, Marti, and Very 2016; Abou-Moustafa and
Ferrie 2012, Pardo 2018.

- different from existing generalized Pythagoras inequalities
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Conclusion

Conclusion

For any n-dimensional multivariate Gaussian distributions N1,N2 and N3

1 The approximate symmetry of small KL divergence between Gaussians

2 Relaxed triangle inequality

3 Applications in deep anomaly detection, reinforcement learning, and sample
complexity research.
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