

FlowPG: Action-constrained Policy Gradient with Normalizing Flows

Janaka Chathuranga Brahmanage, Jiajing Ling, Akshat Kumar

School of Computing and Information Systems Singapore Management University {janakat.2022, jjling.2018}@phdcs.smu.edu.sg, akshatkumar@smu.edu.sg

Presented by: Janaka Chathuranga Brahmanage

Motivating Examples in Constrained RL

Image Source: Pham, T.-H., De Magistris, G., & Tachibana, R. (2018). OptLayer—Practical Constrained Optimization for Deep Reinforcement Learning in the Real World (arXiv:1709.07643). arXiv. http://arxiv.org/abs/1709.07643

To avoid collisions in robot arms

Image Source: Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI Gym (arXiv:1606.01540). arXiv. https://doi.org/10.48550/arXiv.1606.01540

To describe physical limitations in simulators

Action Constrained Reinforcement Learning (ACRL)

 Agents can only take actions from feasible subset of all actions based on the current state.

Action Constrained Reinforcement Learning (ACRL)

 Agents can only take actions from feasible subset of all actions based on the current state.

Previous Work

- A Projection Layer
 - Projection the action into the nearest action in the feasible region

Challenge: Zero gradient problem

• NFWPO

- Use Frank-Wolfe algorithm to update
- Challenge: Significantly high runtime overhead due to Frank-Wolfe direction finding subproblem in the policy update.

Our Contributions

- We develop multiple methods to generate samples from constrained space
 - Hamiltonian Monte-Carlo
 - Probabilistic decision diagrams (PSDD)
- We utilize normalizing flows, a type of generative model to learn a differentiable, invertible mapping between the samples from constrained space and a simple latent distribution.
- We propose a method to integrate normalizing-flow model with deep RL algorithms such as DDPG

Training a Normalizing-Flow model to approximate the constrained space

- We first generate samples (s, a) from the feasible region,
 - Rejection Sampling
 - Hamiltonian Monte Carlo
- Map them to a **uniform base distribution** using a normalizing flow model and maximize log-likelihood

After training, the model serves as a differentiable, bijective mapping from a simple uniform distribution to the feasible region.

Infeasible actions

Example Mapping: Reacher Env

Quality of the Trained Flow

- For RL-agent to converge to better returns, the model should approximate the constrained space well.
 - The model should produce actions only in feasible region (Accuracy)
 - The model should be able to cover most of the feasible region (Recall)

Figure 3: Mapping between a uniform distribution and action space of Reacher with constraint $a_1^2 + a_2^2 \le 0.05$

Measuring Accuracy

• Generate sample from using the model and measure what percentage of them are placed in the feasible region.

Measuring Recall (Coverage)

 Generate samples from the feasible region using a known technique and map them back to the latent space to measure recall.

$$recall(s) = rac{\sum_{a \in \mathcal{C}(s)} \mathbb{I}_{dom_{f_\psi}} f_\psi^{-1}(a,s)}{|\mathcal{C}(s)|}$$

Integration with the RL agent

• Inverse of the trained model is incorporated with RL agent's policy network to output feasible actions as the final output

Evaluation

- Environments
 - 4 continues action environments
 - Reacher
 - Half Cheetah
 - Hopper
 - Walker2d
 - 1 combinatorial action environment
 - Bike Sharing System (BSS)

- Algorithms
 - NFWPO
 - DDPG+Projection
 - FlowPG (Ours)

Fewer constraint violations

 Our approach produce fewer constrain violations and the magnitude of the constraint violations are low.

Better returns and faster run time

 In all cases our approach produce similar or better returns with a significantly faster run times than NFWPO.

Thank you

FlowPG: Action-constrained Policy Gradient with Normalizing Flows

Janaka Chathuranga Brahmanage, Jiajing Ling, Akshat Kumar School of Computing and Information Systems Singapore Management University {janakat.2022, jjling.2018}@phdcs.smu.edu.sg, akshatkumar@smu.edu.sg