

Statistical Knowledge Assessment for Large Language Models

Qingxiu Dong¹, Jingjing Xu², Lingpeng Kong³, Zhifang Sui¹, Lei Li⁴ ¹Peking University, ²Shanghai AI Lab, ³The University of Hong Kong, ⁴Carnegie Mellon University

Despite the remarkable success of LLMs, critical concerns arise --- LLMs often generate unreliable answers given varying prompts.

However, previous studies on model knowledge evaluation primarily assess accuracy, not reliability.

Accurate but Unreliable

Fig1. Accuracy v.s. Reliability

In this work, we evaluate the **reliable knowledge generation ability of** LLMs and present a statistical approach, KaRR.

- a vast suite for large-scale knowledge evaluation.
- applied on 20 LLMs, our method effectively assesses their factual knowledge generation reliability.
- KaRR score correlates highly with human evaluation and mitigates evaluation variance and spurious correlation

Graphical Model for Knowledge

- Latent variables S, R, O represents the symbolic subject, relation, and object, respectively
- α, β, γ denotes the random variables for the textual forms (textual aliases*)

*"Aliases" are alternative names for entities or relations, defined in Wikidata (https://www.wikidata.org/wiki/Help:Aliases).

Code and data: <u>dqxiu/KAssess (qithub.com)</u>

KaRR.

Please refer to the paper for further definitions of the symbols.

$$\operatorname{XaRR}_{s}(s,r,o) = \frac{\sum_{k=1}^{|\boldsymbol{\beta}|} P(\beta_{k}|s,r) \sum_{j=1}^{|\boldsymbol{\gamma}|} P_{\mathcal{M}}(\gamma_{j}|s,r,\beta_{k}) P(o|\gamma_{j})}{\sum_{u=1}^{|\boldsymbol{s}_{u}|} P(s_{u}|r) \cdot \sum_{k=1}^{|\boldsymbol{\beta}|} P(\beta_{k}|s_{u},r) \sum_{j=1}^{|\boldsymbol{\gamma}|} P_{\mathcal{M}}(\gamma_{j}|s_{u},r,\beta_{k}) P(o|\gamma_{j})}$$

Experimental Results

Basic Information and Human Evaluation

Subj.	Obj. Alias	Rel.	Rel. Cvg.	Method	Method Recall		Kendall's $ au$ p-value		
Alias		Alias		LAMA@1	83.25%	0.17	0.10		
X	×	×	6.83%	LAMA@10	65.81%	0.08	0.23		
×	×	×	6.83%	ParaRel	69.15%	0.22	0.02		
×	×	1	6.33%	K-Prompts	78.00 %	0.32	0.03		
1	1	1	100%	KaRR	95.18%	0.43	0.03		
	Subj. Alias X X V	Subj. Obj. Alias X X X X X X X X	Subj. AliasObj. AliasRel. AliasXXXXXXXXXXXXXXXXXX	Subj. AliasObj. AliasRel. AliasRel. Cvg.XXX6.83%XXX6.83%XXX6.33%XXX100%	Subj. AliasObj. AliasRel. AliasRel. Cvg.MethodXXX6.83%LAMA@1XXX6.83%ParaRelXX✓6.33%K-Prompts✓✓100%KaRR	Subj. Obj. Rel. Rel. Method Recall Alias Alias Cvg. LAMA@1 83.25% X X 6.83% LAMA@10 65.81% X X 6.83% ParaRel 69.15% X X 6.33% K-Prompts 78.00% X X 100% KaRR 95.18%	Subj. Alias Rel. Alias Rel. Cvg. Method Recall Kendall's τ X X X 6.83% LAMA@1 83.25% 0.17 X X 6.83% LAMA@10 65.81% 0.08 X X 6.83% ParaRel 69.15% 0.22 X X 6.33% K-Prompts 78.00% 0.32 Y Y 100% KaRR 95.18% 0.43		

Tab1. Basic information

Tab2. Results of human evaluation

• Our method has a good coverage of various relations and entity aliases, our assessment suite contains 994,123 entities and 600 relations.

• KaRR exhibits a strong correlation with human assessment.

B. Evaluation Variance and Spurious Correlation

ethod	Var (\downarrow)	Std (\downarrow)	Method	$\mathbf{SP}\left(\downarrow ight)$	$\Delta \mathbf{P}\left(\downarrow ight)$
AMA@1	1.90	1.37	LAMA@1	3.81	0.00
AMA@10	5.14	2.27	LAMA@10	64.29	47.31
raRel	0.77	0.94	ParaRel	2.66	-0.51
Prompts	2.34	5.47	K-Prompts	0.00	-7.54
aRR	0.67	0.82	KaRR	1.94	-14.94

Tab4. Evaluation variance

Tab5. Spurious correlation

• Compared to previous methods, KaRR results are more robust and less influenced by the spurious correlation.

C. KaRR Scores on 20 LLMs

						20.0			
Model	Size	KaRR Score	Model	Size	KaRR Score	17.5			
GPT	0.12B	9.57	GLM	10 B	5.59	15.0			
XLNet	0.12B	5.86	Dolly	12B	15.60	15.0			-
T5-large	0.74B	3.22	LLaMA	13 B	13.86	<u>و</u> 12.5		-	
Phi-1.5	1.3B	10.58	Alpaca	13 B	8.24	S 10.0	•		
GPT2-XL	1.56B	12.27	Vicuna	1 3B	19.50	KaR			
GPT-NEO	2.65B	13.44	WizardLM	1 3B	16.90	7.5		•	T5
T5-3B	3B	9.52	Moss	16 B	11.20	5.0		_	GPT2 OPT
Falcon	7B	7.97	LLaMA	65B	14.56	2.5	1	_	Llama Vicuna
BLOOM	7B	7.72	LLaMA2	65B	19.71	0.0			-•- Alpaca
LLaMA	7B	12.37	OPT	175 B	23.06	0.0 0	2 4 #Mode	6 I Parame	8 10 12 ters (B)
		Tab6. Evaluation re	sults on 20 LLMs				Fig5. Scalin	g resul	ts
$ \begin{array}{c} 1.0 \\ 90.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ P 1 \\ P \\$									OPT-350M OPT-2.7B OPT-175B
KaRR scores on the 30 best known relations of OPT-350M									
1.0 0.8 0.6 2000 0.2 0.0 0	p210p2146p84	p1432p1652p2912p3828p634p	63 ¹ p15 ¹ p346 ¹ p8 ¹⁶ p36	4 ⁴ p21 ¹ p14 ⁰ p	841 p217 p1344 p541 p1398 p33	20 p165 p2329 p263 p	1322p2591p26		OPT-350M OPT-2.7B OPT-175B
KaRR scores on the 30 best known relations of OPT-350M Fig6. KaRR scores on different relations when scaling up OPT									
 small and medium-sized LLMs struggle with generating correct facts consistently. 									
 instruction tuning could influence knowledge consistency and correctness. 									

• scaling law: larger models generally hold more factual knowledge.