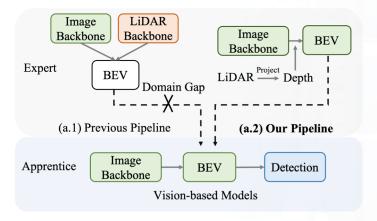
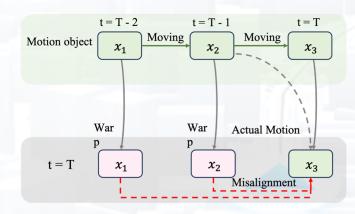
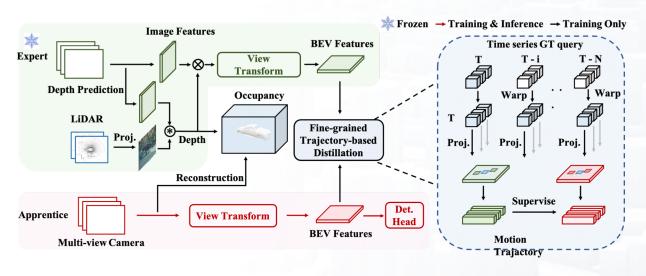

Open PriveLab 減驾


Leveraging Vision-Centric objects for 3D Object Detection

Linyan Huang, Zhiqi Li, Chonghao Sima, Wenhai Wang, Jingdong Wang, Yu Qiao, Hongyang Li Shanghai Al Lab, Nanjing University, CUHK, Baidu


NeurIPS 2023

Comparison



Motion Misalignment

Overview

- Better Expert
- Occupancy Reconstruction
- Motion Trajectory Module

Methods	Backbone	Image Size	Frames	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
BEVDet [23]	ResNet-50	256 × 704	1	0.298	0.379	0.725	0.279	0.589	0.860	0.245
PETR [39]	ResNet-50	384×1056	1	0.313	0.381	0.768	0.278	0.564	0.923	0.225
BEVDet4D [22]	ResNet-50	256×704	2	0.322	0.457	0.703	0.278	0.495	0.354	0.206
BEVDepth [35]	ResNet-50	256×704	2	0.351	0.475	0.639	0.267	0.479	0.428	0.198
BEVStereo [34]	ResNet-50	256×704	2	0.372	0.500	0.598	0.270	0.438	0.367	0.190
STS [54]	ResNet-50	256×704	2	0.377	0.489	0.601	0.275	0.450	0.446	0.212
VideoBEV [19]	ResNet-50	256×704	8	0.422	0.535	0.564	0.276	0.440	0.286	0.198
SOLOFusion [43]	ResNet-50	256×704	16+1	0.427	0.534	0.567	0.274	0.411	0.252	0.188
StreamPETR [51]	ResNet-50	256×704	8	0.432	0.540	0.581	0.272	0.413	0.295	0.195
Baseline*	ResNet-50	256 × 704	8+1	0.401	0.515	0.595	0.279	0.489	0.291	0.198
VCD-A	ResNet-50	256×704	8+1	0.426	0.540	0.547	0.271	0.433	0.268	0.207
Baseline*†	ResNet-50	256×704	8+1	0.418	0.542	0.522	0.267	0.428	0.262	0.188
VCD-A [†]	ResNet-50	256×704	8+1	0.446	0.566	0.497	0.260	0.350	0.257	0.203

Methods	Backbone	Image Size	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D† [52]	R101-DCN	900 × 1600	0.358	0.428	0.690	0.249	0.452	1.434	0.124
DETR3D† [53]	V2-99	900×1600	0.412	0.479	0.641	0.255	0.394	0.845	0.133
UVTR [33]	V2-99	900×1600	0.472	0.551	0.577	0.253	0.391	0.508	0.123
BEVDet4D [†] [22]	Swin-B [41]	900×1600	0.451	0.569	0.511	0.241	0.386	0.301	0.121
BEVFormer [36]	V2-99	900×1600	0.481	0.569	0.582	0.256	0.375	0.378	0.126
PolarFormer [28]	V2-99	900×1600	0.493	0.572	0.556	0.256	0.364	0.439	0.127
BEVDistill [11]	ConvNeXt-B	900×1600	0.496	0.594	0.475	0.249	0.378	0.313	0.125
PETRv2 [40]	RevCol [4]	640×1600	0.512	0.592	0.547	0.242	0.360	0.367	0.126
BEVDepth [35]	ConvNeXt-B	640×1600	0.520	0.609	0.445	0.243	0.352	0.347	0.127
AeDet† [15]	ConvNeXt-B	640×1600	0.531	0.620	0.439	0.247	0.344	0.292	0.130
SOLOFusion [43]	ConvNeXt-B	640×1600	0.540	0.619	0.453	0.257	0.376	0.276	0.148
StreamPETR [51]	ConvNeXt-B	640×1600	0.550	0.631	0.493	0.241	0.343	0.243	0.123
Baseline*	ConvNeXt-B	640 × 1600	0.522	0.610	0.457	0.253	0.391	0.271	0.142
VCD-A	ConvNeXt-B	640×1600	0.548	0.631	0.436	0.244	0.343	0.290	0.120

- VCD-A Results on nuScenes val
- VCD-A Results on nuScenes test
- Consistency Improvement

Methods	Venue	Backbone	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
BEVFusion [38]	NeurIPS 2022	LiDAR & Image	0.642	0.680	-	-	-	-	-
FUTR3D [10]	Arxiv 2022	LiDAR & Image	0.645	0.683	-	-	-	-	-
UVTR [33]	NeurIPS 2022	LiDAR & Image	0.654	0.702	0.332	0.258	0.268	0.212	0.177
CMT [57]	Arxiv 2023	LiDAR & Image	0.679	0.708	-	-	-	-	-
VCD-E	-	Image	0.677	0.711	0.308	0.254	0.317	0.189	0.201

Methods	Backbone	mAP	NDS
BEVFusion	ResNet-50	0.598	0.662
BEVFusion	ConvNext-B	0.597	0.665
VCD-E	ResNet-50	0.611	0.656
VCD-E	ConvNext-B	0.664	0.693

- VCD-E Results on nuScenes val
- Gains of different image backbone
 on multi-modal models

Expert	Paradigm	mAP	NDS
-	-	0.297	0.409
CenterPoint [60]	CM	0.281	0.420
Transfusion [2]	CM	0.292	0.435
BEVDepth [35]	UM	0.341	0.442
VCD-E	UM	0.354	0.459

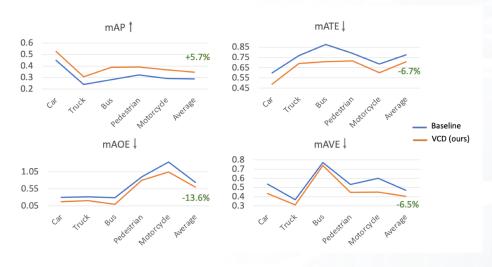
Methods	mAP	NDS
Baseline [35]	0.297	0.409
FitNet [44]	0.318	0.421
CWD [46]	0.311	0.412
BEVDistill [11]	0.316	0.439
VCD-A	0.354	0.459

- The performance gains of the apprentice
- Effect of different distillation methods

Expert	Paradigm	mAP	NDS
-	-	0.297	0.409
CenterPoint [60]	CM	0.281	0.420
Transfusion [2]	CM	0.292	0.435
BEVDepth [35]	UM	0.341	0.442
VCD-E	UM	0.354	0.459

Methods	mAP	NDS
Baseline [35]	0.297	0.409
FitNet [44]	0.318	0.421
CWD [46]	0.311	0.412
BEVDistill [11]	0.316	0.439
VCD-A	0.354	0.459

- The performance gains of the apprentice
- Effect of different distillation methods

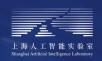


Temporal Length	Distill	mAP (%)	NDS (%) ↑	mATE↓	mAOE↓	mAVE↓
1	X /	26.6 30.1 (+3.5)	37.9 41.5(+3.6)	0.815 0.732	0.645 0.629	0.556 0.476
2	X	26.9 31.3 (+4.4)	38.4 43.2 (+4.8)	0.804 0.717	0.706 0.615	0.461 0.403
4	X /	28.4 33.0 (+4.6)	39.8 44.1 (+4.3)	0.748 0.707	0.739 0.632	0.432 0.389
8	X /	29.7 35.4 (+5.7)	40.9 45.9 (+5.0)	0.762 0.690	0.714 0.625	0.415 0.370

Trajectory Length	Distill	mAP (%)	NDS (%)
-	×	29.7	40.9
0	✓	31.8	42.1
1	✓	33.1	44.5
3	1	34.6	45.6
5	✓	35.4	45.9
9	✓	33.9	44.7

- The performance gains on different temporal lengths
- The performance gains of different trajectory length

• The Effects of VCD on Movable Objects



Visualization

• Visualization of the Predictions

Open PriveLab 淌驾

Thanks

opendrivelab.com | X @OpenDriveLab