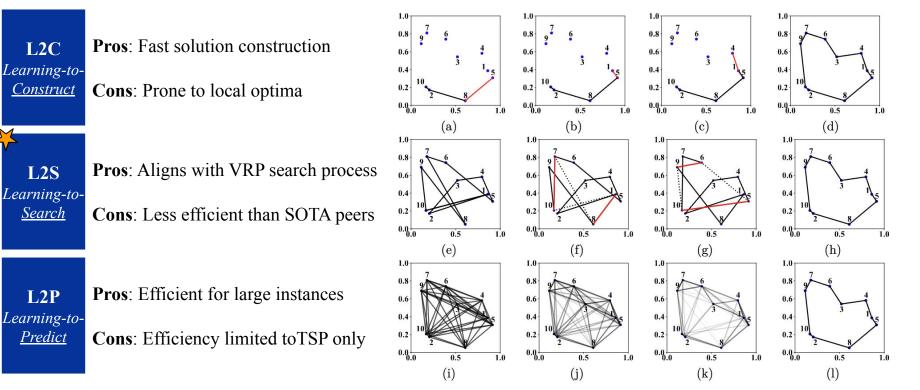
# Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt


Yining Ma<sup>1</sup>, Zhiguang Cao<sup>2</sup>, Yeow Meng Chee<sup>1</sup>

<sup>1</sup>National University of Singapore <sup>2</sup>Singapore Management University



## **Background - Learning to Optimize Vehicle Routing Problems (VRPs)**

Can we better learn L2S solvers for VRPs under various constraints?



NEURAL INFORMATION PROCESSING SYSTEMS

## **Contribution 1: Neural k-Opt (NeuOpt) - Action Factorization**

The first flexible L2S solver capable of handling k-opt for any  $k \ge 2$ 



Issue in existing L2S solvers: Simplistic action space designs (fixed 2-opt or 3-opt only)!

| Tailored Action Factorization (S-move, I-move, E-move)                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <b>S-move</b><br>1. Remove one edge                                                                                                                                                   | <ol> <li>I-move</li> <li>Add a new edge (starting from the first end-point)</li> <li>Remove the corresponding conflicting edge</li> <li>Reverse the edge directions in between</li> </ol> | <b>E-move</b><br>1. Fix the loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{c} \bullet \bigcirc \bullet $ | $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                  | $\begin{array}{c} \bullet & \bullet & \bullet \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ \hline & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$ |  |  |  |  |  |  |  |  |  |

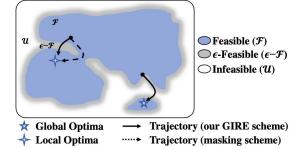
#### **Advantages of Tailored Action Factorization**

- 1. Breaks down complex k-opt into manageable step-by-step constructions.
- 2. Adapts *k* throughout the search, balancing coarse-grained (larger k) and fine-grained (smaller k) searches

### **Contribution 1: Neural k-Opt (NeuOpt) - RDS Decoder**

The first flexible L2S solver capable of handling k-opt for any  $k \geq 2$ 




|                                                                                                                                                                                                                              | Designs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Advantage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ablation of GRUs, $\mu$ , $\lambda$      |                                                                                                                                                                                                                    |                                       |                                                  |                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------|--|
| Recurrent                                                                                                                                                                                                                    | • GRUs for Action Factorization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flexible: One united                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methods                                  | TSP-100<br>Size(M) Obj.↓                                                                                                                                                                                           |                                       | CVRP-20<br>Size(M) Obj.↓                         |                         |  |
| Dual-Stream<br>(RDS) decoder                                                                                                                                                                                                 | <ul> <li>Dual-Stream Contextual Modeling</li> <li>Move stream µ - past decisions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | decoder for decoding<br>k-opt exchanges with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w/o-GRUs<br>w/o- $\mu$<br>w/o- $\lambda$ | 0.468<br>0.617<br>0.617                                                                                                                                                                                            | 7.804<br>7.806<br>7.799               | 0.470<br>0.620<br>0.620                          | 6.165<br>6.165<br>6.164 |  |
|                                                                                                                                                                                                                              | • Edge stream $\lambda$ - edge proposals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | any $k \ge 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ours                                     | 0.683                                                                                                                                                                                                              | 7.798                                 | 0.685                                            | 6.163                   |  |
| • Anchor node • Last sele<br>• Node to select • Current s<br>$q_{\mu}^{0}$ • GRU<br>$v_{\mu}^{1}$<br>• $h_{1}$ • $h_{2}$ • $h_{3}$ • $h_{4}$ • $h_{5}$ • $h_{6}$<br>$q_{\lambda}^{0}$ • GRU<br>Decoder $\kappa = 1$ • Action | source node • Ghost mark Edge stream $\lambda$ === Attention<br>$q_{\mu}^{\mu}$ $g_{\mu}^{\mu}$ $g_{\mu}^{\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Attention score<br>Masked attention score<br>$\mathbf{GRU}$<br>$\mathbf{a}_{\mu}^{3}$<br>$\mathbf{a}_{\mu}^{3}$<br>$\mathbf{b}_{1}^{3} = h_{4}$<br>$\mathbf{b}_{1}^{3} = h_{4}$<br>$\mathbf{c}_{\mu}^{3} = h_{4}$<br>$\mathbf{c}_{\mu}^{3} = h_{4}$<br>$\mathbf{c}_{\mu}^{3} = h_{5}$<br>$\mathbf{c}_{\mu}^{3} = h_{5}$<br>$\mathbf{c}_{\mu}^{3} = h_{3}$<br>$\mathbf{c}_{\mu}^{3} = h_$ | n change                                 | Added edge<br>Removed er<br>$\mathbf{GRU}$<br>$\frac{4}{4} = \mathbf{h}_7$<br>$\mathbf{h}_2 = \mathbf{h}_3 = \mathbf{h}_4$<br>$\frac{4}{4} = \mathbf{h}_5$<br>$\mathbf{GRU}$<br>$\mathbf{K} = 4 \mathbf{I}$ Action | $\frac{1}{1} \frac{r[a, b]}{r[a, b]}$ |                                                  | hor x <sub>a</sub>      |  |
| $ \begin{array}{c} \bullet \bigcirc \bullet $                                        | $\xrightarrow{X_7} \xrightarrow{X_8} \xrightarrow{X_9} \xrightarrow{X_9} \xrightarrow{X_2} \xrightarrow{X_3} \xrightarrow{X_4} \xrightarrow{X_5} \xrightarrow{X_6} \xrightarrow{X_7} \xrightarrow{X_8} \xrightarrow{X_9} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\neg$                                   |                                                                                                                                                                                                                    | $x_5$ $x_6$<br>w solution $x_5$       | x <sub>7</sub> x <sub>8</sub>                    | +0+                     |  |
| $\begin{array}{c} \text{Remove}\left[(x_2 \rightarrow x_3)\right] \\ \text{Add}  [ \ ] \end{array}$                                                                                                                          | $\begin{bmatrix} \mathbf{R} \\ \mathbf{R} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remove $[(x_2 \to x_3), (x_4 \to x_5), (x_7 \to x_8)$<br>Add $[(x_2 \to x_4), (x_3 \to x_7)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )]                                       | ove $[(x_2 \rightarrow x_3)]$<br>$[(x_2 \rightarrow x_4)]$                                                                                                                                                         |                                       | $(x_5), (x_7 \to x_8)$<br>$(x_7), (x_5 \to x_8)$ | 1                       |  |

## **Contribution 2: Guided Infeasible Region Exploration (GIRE)**

The first constraint handling scheme that explores both feasible and infeasible regions



#### A search example of GIRE

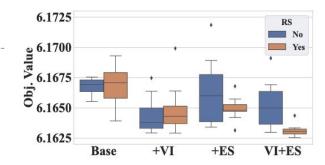


#### Motivations and benefits of our GIRE

- Avoids non-trivial calculations of ground-truth action masks
- Fosters searches at the more promising feasibility boundaries
- Bridges (possibly isolated) feasible regions, helping escape local optima and discover shortcuts to better solutions
- Forces explicit awareness of constraints and VRP landscape

Feature Supplement

Reward


Shaping

- **FI features via node embedding** (in encoder) • Indicate feasibility within the current solution
- ES features via hyper-networks (in decoder)
   Provide historical exploration behaviour statistics

 $r_t^{\text{GIRE}} = r_t + \alpha \cdot r_t^{\text{reg}} + \beta \cdot r_t^{\text{bonus}}$ 

- **Regulation:** imposes penalties when exploration is only focused on one region (extreme exploration behaviour)
- **Bonus:** encourages the search at the ε-feasible regions (boundaries of feasible and infeasible regions)

#### Effects of GIRE



5

### **Contribution 3: Dynamic Data Augmentation (D2A)**

Help to enhance the search diversity and escape local optima during inference



#### Pseudocode of D2A Algorithm

Algorithm 3 Dynamic Data Augmentation (D2A)

**Input**: Instance  $\mathcal{G}$ , policy network  $\pi_{\theta}$ , inference step T, number of augments D2A, maximum number of consecutive steps allowed before considering the search trapped in local optima  $T_{D2A}$ **Output**: Best solution found during solving all the augmented instances  $\mathcal{G}_i$ 

```
1: for i = 1, \dots, D2A do
```

- 2: Get an augmented instance:  $\mathcal{G}_i \leftarrow \text{Augmentation}(\mathcal{G});$
- 3: Get a random solution  $\tau_{i,0}$  and set it as the best-so-far solution for  $\mathcal{G}_i$ :  $\tau_i^{\text{bsf}} \leftarrow \tau_{i,0}$ ;
- 4: Set counter:  $T_i^{\text{stall}} \leftarrow 0$ ;
- 5: end for

```
6: for t = 1, \dots, T do
```

```
7: for i = 1, \dots, D2A do
```

```
8: Run one inference step to get a new solution \tau_{i,t} for \mathcal{G}_i using policy network \pi_{\theta};
```

```
9: if new solution \tau_{i,t} is a new best-so-far solution for instance \mathcal{G}_i then
```

```
10: Update the best-so-far solution: \tau_i^{\text{bsf}} \leftarrow \tau_{i,t};
```

```
11: Reset counter: T_i^{\text{stall}} \leftarrow 0;
```

#### 12: else

```
13: Increment counter: T_i^{\text{stall}} = T_i^{\text{stall}} + 1;

14: end if

15: if T_i^{\text{stall}} \ge T_{\text{D2A}} then

16: Get a new augmented instance: \mathcal{G}_i \leftarrow \text{Augmentation}(\mathcal{G});

17: Reset counter T_i^{\text{stall}} \leftarrow 0

18: end if

19: end for

20: end for
```

#### Effects of D2A

| Inference Type  | TSP-100<br>  Gap↓ | CVRP-100<br>Gap↓ |  |  |  |
|-----------------|-------------------|------------------|--|--|--|
| w/o-D2A (T=5k)  | 0.09%             | 1.00%            |  |  |  |
| w-D2A (T=5k)    | 0.05%             | 0.87%            |  |  |  |
| w/o-D2A (T=10k) | 0.04%             | 0.71%            |  |  |  |
| w-D2A (T=10k)   | 0.02%             | 0.60%            |  |  |  |

### Main Results (on TSP)

#### We achieve SOTA performance on TSP benchmark



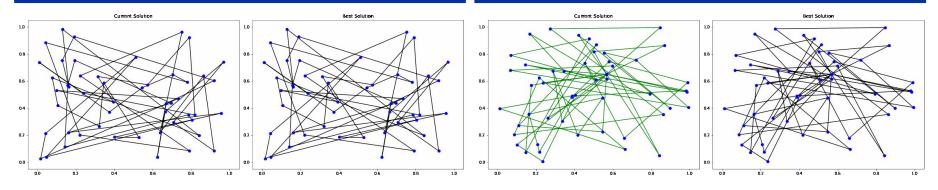
| Method                                             | Model  | Post (Per-  |          | N=20 N           |                |          | N=50             |                |          | $N\!=\!100$      |                |
|----------------------------------------------------|--------|-------------|----------|------------------|----------------|----------|------------------|----------------|----------|------------------|----------------|
| Wethod                                             | Туре   | Ins.) Proc. | Obj.↓    | Gap↓             | Time↓          | Obj.↓    | Gap↓             | Time↓          | Obj.↓    | Gap↓             | Time↓          |
| Concorde [54]                                      | Exact  | -           | 3.827    | -                | 2m             | 5.696    | - 1              | 9m             | 7.765    | -                | 43m            |
| LKH-2 [51]                                         | Н      | -           | 3.827    | 0.00%            | 6m             | 5.696    | 0.00%            | 1.3h           | 7.765    | 0.00%            | 5.7h           |
| GCN+BS [14]#                                       | L2P/SL | BS+H        | 3.827    | 0.00%            | 15m            | 5.698    | 0.04%            | 23m            | 7.869    | 1.35%            | 46m            |
| Att-GCN+MCTS [6] <sup>‡,#</sup>                    | L2P/SL | MCTS        | (≈3.830) | (≈0.00%)         | $\approx 2m$   | (≈5.691) | (≈0.01%)         | $\approx 8m$   | (≈7.764) | (≈0.04%)         | $\approx 15m$  |
| GNN+GLS [40] (relocate+2-opt) <sup>‡</sup>         | L2P/SL | GLS         | -        | ≈0.00%           | $\approx 2.8h$ | -        | ≈0.00%           | $\approx 2.8h$ | -        | $\approx 0.58\%$ | $\approx 2.8h$ |
| CVAE-Opt-DE [43] <sup>‡</sup>                      | L2P/UL | DE          | -        | ≈0.00%           | $\approx 1.2d$ | -        | ≈0.02%           | ≈2.5d          | -        | ≈0.34%           | ≈1.8d          |
| DPDP [42] (100k)                                   | L2P/SL | DP          |          | -                |                |          | -                |                | 7.765    | 0.00%            | 1.9h           |
| DIMES [7] (T=10) <sup>‡,#</sup>                    | L2P/RL | AS+M+M      |          | -                |                |          | -                |                | (≈7.762) | (≈0.01%)         | -              |
| DIFUSCO [15] (T=50, S=16)#                         | L2P/SL | 2-opt       |          | -                |                | 5.696    | 0.01%            | 5.8h           | 7.766    | 0.02%            | 21.7h          |
| AM+LCP* [33] ({1280, 45})                          | L2C/RL | -           | 3.828    | 0.01%            | 2.1h           | 5.699    | 0.05%            | 4.9h           | 7.811    | 0.60%            | 10.9h          |
| Pointerformer [32] (A=8, T=200)                    | L2C/RL | -           | 3.827    | 0.00%            | 13m            | 5.697    | 0.02%            | 1.1h           | 7.773    | 0.11%            | 5.6h           |
| Sym-NCO [13] (A=8, T=200)                          | L2C/RL | -           |          | -                |                |          | -                |                | 7.771    | 0.08%            | 5.6h           |
| POMO [4] (A=8, T=200)                              | L2C/RL | -           | 3.827    | 0.00%            | 13m            | 5.696    | 0.00%            | 1.1h           | 7.770    | 0.07%            | 5.6h           |
| POMO [4] (A=8, T=200)<br>POMO+EAS [5] (A=8, T=200) | L2C/RL | AS          | 3.827    | 0.00%            | 24m            | 5.696    | 0.00%            | 2h             | 7.769    | 0.05%            | 10.9h          |
| POMO+EAS+SGBS [34] (short)                         | L2C/RL | AS+BS       |          | -                |                |          | -                |                | 7.767    | 0.04%            | 6.5h           |
| POMO+EAS+SGBS [34] (long)                          | L2C/RL | AS+BS       |          | -                |                |          | -                |                | 7.767    | 0.03%            | 1.1d           |
| Costa et al. [16] (2-opt, T=2k)                    | L2S/RL | -           | 3.827    | 0.00%            | 31m            | 5.703    | 0.12%            | 40m            | 7.824    | 0.77%            | 1.1h           |
| Sui et al. [17] (3-opt, T=2k) <sup>‡</sup>         | L2S/RL | -           | ≈3.84    | $\approx 0.00\%$ | $\approx 32m$  | ≈5.70    | $\approx 0.08\%$ | $\approx 48m$  | ≈7.82    | ≈0.74%           | $\approx 1.3h$ |
| Wu et al. [39] (2-opt, T=5k)                       | L2S/RL | -           |          | -                |                | 5.709    | 0.23%            | 1.3h           | 7.884    | 1.54%            | 2h             |
| DACT [9] (2-opt, A=4, T=10k)                       | L2S/RL | -           | 3.827    | 0.00%            | 1.5h           | 5.696    | 0.00%            | 4.1h           | 7.772    | 0.10%            | 13.5h          |
| NeuOpt (D2A=1, T=1k)                               | L2S/RL | -           | 3.827    | 0.00%            | 2m             | 5.697    | 0.02%            | 6m             | 7.790    | 0.33%            | 17m            |
| NeuOpt (D2A=1, T=5k)                               | L2S/RL | -           | 3.827    | 0.00%            | 12m            | 5.696    | 0.00%            | 32m            | 7.768    | 0.05%            | 1.4h           |
| NeuOpt (D2A=1, T=10k)                              | L2S/RL | -           | 3.827    | 0.00%            | 23m            | 5.696    | 0.00%            | 1.1h           | 7.766    | 0.02%            | 2.8h           |
| NeuOpt (D2A=5, T=1k)                               | L2S/RL | -           | 3.827    | 0.00%            | 12m            | 5.696    | 0.00%            | 32m            | 7.767    | 0.04%            | 1.4h           |
| NeuOpt (D2A=5, T=3k)                               | L2S/RL | -           | 3.827    | 0.00%            | 35m            | 5.696    | 0.00%            | 1.6h           | 7.765    | 0.01%            | 4.2h           |
| NeuOpt (D2A=5, T=5k)                               | L2S/RL | -           | 3.827    | 0.00%            | 1h             | 5.696    | 0.00%            | 2.7h           | 7.765    | 0.00%            | 7h             |

## Main Results (on CVRP)

We achieve SOTA performance on CVRP benchmark



|        |                                        | Model  | Post (Per-  | N=20  |          |               | N = 50 |        |       | N=100  |        |        |
|--------|----------------------------------------|--------|-------------|-------|----------|---------------|--------|--------|-------|--------|--------|--------|
| Method |                                        | Туре   | Ins.) Proc. | Obj.↓ | Gap↓     | Time↓         | Obj.↓  | Gap↓   | Time↓ | Obj.↓  | Gap↓   | Time↓  |
|        | HGS [21]                               | H      | -           | 6.130 | -        | 10.7h         | 10.366 | -      | 1.2d  | 15.563 | -      | 2.5d   |
|        | LKH-3 [20]                             | H      | -           | 6.135 | 0.08%    | 17.9h         | 10.375 | 0.09%  | 2.8d  | 15.647 | 0.54%  | 5.7d   |
|        | CVAE-Opt-DE [43] <sup>‡</sup>          | L2P/UL | DE          | ≈6.14 | -        | ≈2.4d         | ≈10.40 | -      | ≈4.7d | ≈15.75 | -      | ≈11d   |
|        | DPDP [42] (1000k)                      | L2P/SL | DP          |       | -        |               |        | 1      |       | 15.627 | 0.41%  | 1.2d   |
|        | AM+LCP [33] ({2560, 1}) <sup>‡</sup>   | L2C/RL | -           | ≈6.15 | ≈0.33%   | ≈23m          | ≈10.52 | ≈1.48% | ≈52m  | ≈16.00 | ≈2.81% | ≈2.1h  |
|        | Sym-NCO [13] (A=8, T=200)              | L2C/RL |             |       | -        |               |        | 1      |       | 15.702 | 0.89%  | 7.2h   |
|        | POMO [4] (A=8, T=200)                  | L2C/RL | -           | 6.136 | 0.09%    | 11m           | 10.397 | 0.30%  | 1.4h  | 15.672 | 0.70%  | 7.2h   |
| ۲P     | POMO+EAS [5] (A=8, T=200)              | L2C/RL | AS          | 6.132 | 0.04%    | 38m           | 10.379 | 0.13%  | 3.1h  | 15.610 | 0.30%  | 16h    |
|        | POMO+EAS+SGBS [34] (short)             | L2C/RL | AS+BS       |       | -        |               |        | -      |       | 15.587 | 0.15%  | 1d     |
|        | POMO+EAS+SGBS [34] (long)              | L2C/RL | AS+BS       |       | -        |               |        | -      |       | 15.579 | 0.10%  | 4.1d   |
| CVRP   | NLNS [8] (Ruin-Repair, T=5k)           | L2S/RL | -           | 6.175 | 0.73%    | 48m           | 10.506 | 1.35%  | 1.4h  | 15.915 | 2.26%  | 2.4h   |
|        | NCE [37] (CROSS exchange) <sup>‡</sup> | L2S/SL | -           | ≈6.13 | ≈0.00%   | $\approx 11h$ | ≈10.41 | ≈0.42% | ≈2.3d | ≈15.81 | ≈1.59% | ≈10.4d |
|        | Wu et al. [39] (2-opt, T=5k)           | L2S/RL | -           |       | <u>-</u> |               | 10.544 | 1.72%  | 4.2h  | 16.165 | 3.87%  | 5h     |
|        | DACT [9] (2-opt, A=6, T=10k)           | L2S/RL | -           | 6.130 | 0.01%    | 4h            | 10.383 | 0.16%  | 16h   | 15.736 | 1.11%  | 1.7d   |
|        | NeuOpt-GIRE (D2A=1, T=1k)              | L2S/RL | -           | 6.132 | 0.03%    | 4m            | 10.430 | 0.61%  | 12m   | 15.865 | 1.94%  | 28m    |
|        | NeuOpt-GIRE (D2A=1, T=5k)              | L2S/RL | -           | 6.130 | 0.00%    | 20m           | 10.382 | 0.16%  | 59m   | 15.698 | 0.87%  | 2.3h   |
|        | NeuOpt-GIRE (D2A=1, T=10k)             | L2S/RL | -           | 6.130 | 0.00%    | 41m           | 10.375 | 0.08%  | 2h    | 15.656 | 0.60%  | 4.6h   |
|        | NeuOpt-GIRE (D2A=5, T=6k)              | L2S/RL | -           | 6.130 | 0.00%    | 2.1h          | 10.369 | 0.03%  | 5.9h  | 15.610 | 0.30%  | 13.8h  |
|        | NeuOpt-GIRE (D2A=5, T=20k)             | L2S/RL | - 1         | 6.130 | 0.00%    | 6.8h          | 10.367 | 0.01%  | 19.7h | 15.586 | 0.15%  | 1.9d   |
|        | NeuOpt-GIRE (D2A=5, T=40k)             | L2S/RL | -           | 6.130 | 0.00%    | 13.7h         | 10.367 | 0.01%  | 1.6d  | 15.579 | 0.10%  | 3.8d   |


### **Demonstrations & GitHub Links**

Thank you for listening and welcome to explore our GitHub!



#### GIF 1: NeuOpt Search for TSP

**GIF2: NeuOpt-GIRE for CVRP** 





GitHub link: https://github.com/yining043/NeuOpt