VLATTACK: Multimodal Adversarial Attacks on Vision-Language Tasks via Pre-trained Models

Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Han Liu, Jinghui Cheng, Ting Wang, Fenglong Ma

Introduction

The recent success of vision-language (VL) pre-trained models on multimodal tasks have attracted broad attention from both academics and industry. However, the adversarial robustness is still relatively unexplored.

Therefore, we ask the following question: Can we generate adversarial perturbations on a pre-trained VL model to attack various black-box downstream tasks fine-tuned on the pre-trained one ?
PennState

Introduction

 $\max_{\mathbf{I}',\mathbf{T}'} \mathbb{1}\{S(\mathbf{I}',\mathbf{T}') \neq \mathbf{y}\}, \quad s.t. \ \|\mathbf{I}'-\mathbf{I}\|_{\infty} < \sigma_i, \ Cos(U_s(\mathbf{T}'),U_s(\mathbf{T})) > \sigma_s,$

- Task-specific challenge: The attack mechanism needs to be general and work for attacking multiple tasks.
- Model-specific challenge: The attack method needs to automatically learn the transferability between pre-trained and fine-tuned models on different modalities

VLATTACK

- Single-modal Level Attack: Attacking using a "from image to text" order as the former can be perturbed on a continuous space. Image Attack: BSA. Text Attack: BERT-Attack[1].
- Multi-modal Level Attack: Cross-updating image and text perturbations at the multimodal level based on previous outputs.

[1] Li, Linyang, et al. "BERT-ATTACK: Adversarial Attack Against BERT Using BERT." EMNLP 2020.

Block-wise Similarity Attack (BSA)

Figure 3: A brief illustration of the encoderonly (a) and encoder-decoder (b) structures.

Figure 4: Block-wise similarity attack. \mathbf{F}_{α} is the image encoder, and \mathbf{F}_{β} is the Transformer encoder.

.....

Algorithm Details

Figure 14: An adversarial image-text pair from multimodal attack.

Algorithm 1 VLATTACK

Input: A pre-trained model F, a fine-tuned model S, a clean image-text pair (\mathbf{I}, \mathbf{T}) and its prediction y on the S, and the Gaussian distribution \mathcal{U} : **Parameters:** Perturbation budget σ_i on **I**, σ_s on **T**. Iteration number N and N_s . 1: //Single-modal Attacks: From Image to Text (Section 4.1) 2: Initialize $\mathbf{I}' = \mathbf{I} + \delta$, $\delta \in \mathcal{U}(0, 1)$, $\mathcal{T} =$ 3: // Image attack by updating I' using Eq. (2) for N_s steps 4: $\mathbf{I}' = \mathbf{BSA}(\mathcal{L}, \mathbf{I}', \mathbf{T}, N_s, \sigma_i, F)$ 5: if $S(\mathbf{I}', \mathbf{T}) \neq y$ then return $(\mathbf{I}', \mathbf{T})$ 6: else // Text attack by applying BERT-attack 7: 8: for pertubed text \mathbf{T}'_{i} in BERT-attack do 9: if $\gamma_i = Cos(U_s(\mathbf{T}'_i), U_s(\mathbf{T})) > \sigma_s$ then Add the pair $(\mathbf{T}'_i, \gamma_i)$ into \mathcal{T} ; 10: if $S(\mathbf{I}, \mathbf{T}'_i) \neq y$ then return $(\mathbf{I}, \mathbf{T}'_i)$ 11: 12: end if 13: end if 14: end for 15: end if 16: // Multimodal Attack (Section 4.2) 17: Rank \mathcal{T} according to similarity scores $\{\gamma_i\}$ and get top-K samples $\{\hat{\mathbf{T}}'_1, \cdots, \hat{\mathbf{T}}'_K\}$ according to Eq. (3); 18: for $k = 1, \dots, K$ do if $S(\mathbf{I}'_k, \mathbf{T}'_k) \neq y$ then return $(\mathbf{I}'_k, \mathbf{T}'_k)$ 19: 20: end if Replace $(\mathbf{I}'_{k}, \hat{\mathbf{T}}'_{k})$ with $(\mathbf{I}', \mathbf{T})$ in Eq. (2); 21:
$$\begin{split} \mathbf{I}_{k+1}^{'} &= \mathrm{BSA}(\mathcal{L}, \mathbf{I}_{k}^{'}, \hat{\mathbf{T}}_{k}^{'}, N_{k}, \sigma_{i}, F) \\ \mathrm{if} \ S(\mathbf{I}_{k+1}^{'}, \mathbf{T}_{k}^{'}) \neq y \ \mathrm{then} \ \mathrm{return} \ (\mathbf{I}_{k+1}^{'}, \mathbf{T}_{k}^{'}) \end{split}$$
22: 23: 24: end if 25: end for 26: return None

Experimets

Table 1: Comparison of VLATTACK with baselines on ViLT, Unitab, and OFA for different tasks, respectively. All results are displayed by ASR (%). B&A means the BERT-Attack approach.

Pre-trained	Task Dataset		Image Only				Text Only		multimodality	
Model	Task	Dataset	DR	SSP	FDA	BSA	B&A	R&R	Co-Attack	VLATTACK
ViLT	VQA	VQAv2	23.89	50.36	29.27	65.20	17.24	8.69	35.13	78.05
	VR	NLVR2	21.58	35.13	22.60	52.17	32.18	24.82	42.04	66.65
BLIP	VQA	VQAv2	7.04	11.84	7.12	26.36	21.04	2.94	14.24	49.26
	VR	NLVR2	6.66	6.88	10.22	27.16	33.08	16.92	8.70	52.66
Unitab	VQA	VQAv2	22.88	33.67	41.80	48.40	14.20	5.48	33.87	62.20
	REC	RefCOCO	21.32	64.56	75.24	89.70	13.68	8.75	56.48	93.52
	REC	RefCOCO+	26.30	69.60	76.21	90.96	6.40	2.46	68.69	93.40
	REC	RefCOCOg	26.39	69.26	78.64	91.31	22.03	18.52	65.50	95.61
	VQA	VQAv2	25.06	33.88	40.02	54.05	10.22	2.34	51.16	78.82
OFA	VE	SNLI-VE	13.71	15.11	20.90	29.19	10.51	4.92	18.66	41.78
	REC	RefCOCO	11.60	16.00	27.06	40.82	13.15	7.64	32.04	56.62
	REC	RefCOCO+	16.58	22.28	33.26	46.44	4.66	7.04	45.28	58.14
	REC	RefCOCOg	16.39	24.80	33.22	54.63	19.23	15.13	30.53	73.30

Table 2: Evaluation of the Uni-modal tasks on OFA. We highlight the prediction score reported by the original OFA paper with *.

Dataset		ImageNet-1K			
Metric	BLEU $@4(\downarrow)$	METEOR (\downarrow)	CIDEr (\downarrow)	SPICE (\downarrow)	ASR(↑)
OFA*	42.81	31.30	145.43	25.37	-
DR	30.26	24.47	95.52	17.89	10.43
SSP	10.99	12.52	23.54	5.67	19.44
FDA	17.77	17.92	55.75	11.36	12.31
BSA (Ours)	3.04	8.08	2.16	1.50	41.35

Table 3: CLIP model evaluation on SVHN.

Dataset	SVHN				
Model	CLIP-ViT/16	CLIP-RN50			
DR	3.32	71.62			
SSP	6.36	84.26			
FDA	6.20	83.52			
BSA (Ours)	15.74	84.98			

PennState

Conclusion

Explore the adversarial vulnerability across pre-trained and fine-tuned VL models.

≻We propose VLATTACK to attack from different levels.

>Extensive experiments on five VL models and six tasks.

Currently, our research problem is formulated by assuming the pre-trained and downstream models share similar structures. The adversarial transferability between different pre-trained and fine-tuned models is worth exploring, which we left to our future work.

