VLATTACK: Multimodal Adversarial Attacks on Vision-Language Tasks via Pre-trained Models

Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Han Liu, Jinghui Cheng, Ting Wang, Fenglong Ma

Introduction

>The recent success of vision-language (VL) pre-trained models on multimodal tasks have attracted broad attention from both academics and industry. However, the adversarial robustness is still relatively unexplored.
>Therefore, we ask the following question: Can we generate adversarial perturbations on a pre-trained VL model to attack various black-box downstream tasks fine-tuned on the pre-trained one?

Introduction

> Task-specific challenge: The attack mechanism needs to be general and work for attacking multiple tasks.
>Model-specific challenge: The attack method needs to automatically learn the transferability between pre-trained and fine-tuned models on different modalities

VLATTACK

$>$ Single-modal Level Attack: Attacking using a "from image to text" order as the former can be perturbed on a continuous space. Image Attack: BSA. Text Attack: BERT-Attack[1].
$>$ Multi-modal Level Attack: Cross-updating image and text perturbations at the multimodal level based on previous outputs.

Block-wise Similarity Attack (BSA)

Figure 3: A brief illustration of the encoder-
Figure 4: Block-wise similarity attack. \mathbf{F}_{α} is the im-
only (a) and encoder-decoder (b) structures.
age encoder, and \mathbf{F}_{β} is the Transformer encoder.
Figure 3: A brief illustration of the encoder- Figure 4: Block-wise similarity attack. \mathbf{F}_{α} is the
only (a) and encoder-decoder (b) structures.
age encoder, and \mathbf{F}_{β} is the Transformer encoder.

Algorithm Details

mis
Figure 12: An adversarial image from BSA

Figure 14: An adversarial image-text pair from multimodal attack.

Algorithm 1 VLATTACK

Input: A pre-trained model F, a fine-tuned model S, a clean image-text pair (\mathbf{I}, \mathbf{T}) and its prediction y on the S, and the Gaussian distribution \mathcal{U} :
Parameters: Perturbation budget σ_{i} on \mathbf{I}, σ_{s} on \mathbf{T}. Iteration number N and N_{s}.
1: //Single-modal Attacks: From Image to Text (Section 4.1)
2. Initialize $\mathbf{I}^{\prime}=\mathbf{I}+\delta, \delta \in \mathcal{U}(0,1), \mathcal{T}=$

3: // Image attack by updating \mathbf{I}^{\prime} using Eq. (2) for N_{s} steps
4: $\mathbf{I}^{\prime}=\operatorname{BSA}\left(\mathcal{L}, \mathbf{I}^{\prime}, \mathbf{T}, N_{s}, \sigma_{i}, F\right)$
5: if $S\left(\mathbf{I}^{\prime}, \mathbf{T}\right) \neq y$ then return $\left(\mathbf{I}^{\prime}, \mathbf{T}\right)$
6: else
// Text attack by applying BERT-attack
for pertubed text \mathbf{T}_{i}^{\prime} in BERT-attack do
if $\gamma_{i}=\operatorname{Cos}\left(U_{s}\left(\mathbf{T}_{i}^{\prime}\right), U_{s}(\mathbf{T})\right)>\sigma_{s}$ then
Add the pair $\left(\mathbf{T}_{i}^{\prime}, \gamma_{i}\right)$ into \mathcal{T};
if $S\left(\mathbf{I}, \mathbf{T}_{i}^{\prime}\right) \neq y$ then return $\left(\mathbf{I}, \mathbf{T}_{i}^{\prime}\right)$ end if
end if

end if end for

4: end
17: Rank \mathcal{T} according to similarity scores $\left\{\gamma_{i}\right\}$ and get top- K samples $\left\{\hat{\mathbf{T}}_{1}^{\prime}, \cdots, \hat{\mathbf{T}}_{K}^{\prime}\right\}$ according to Eq. (3); 18: for $k=1 \ldots K$ do
19: if $S\left(\mathbf{I}_{k}^{\prime}, \mathbf{T}_{k}^{\prime}\right) \neq y$ then return $\left(\mathbf{I}_{k}^{\prime}, \mathbf{T}_{k}^{\prime}\right)$
end if
Replace ($\mathbf{I}_{k}^{\prime}, \hat{\mathbf{T}}_{k}^{\prime}$) with ($\mathbf{I}^{\prime}, \mathbf{T}$) in Eq. (2)
$\mathbf{I}_{k+1}^{\prime}=\operatorname{BSA}\left(\mathcal{L}, \mathbf{I}_{k}^{\prime}, \hat{\mathbf{T}}_{k}^{\prime}, N_{k}, \sigma_{i}, F\right)$
$\mathbf{I}_{k+1}=\mathrm{BSA}\left(\mathcal{L}, \mathbf{I}_{k}, \mathbf{T}_{k}^{\prime}, N_{k}, \sigma_{i}, F\right)$
if $S\left(\mathbf{I}_{k+1}^{\prime}, \mathbf{T}_{k}^{\prime}\right) \neq y$ then return $\left(\mathbf{I}_{k+1}^{\prime}, \mathbf{T}_{k}^{\prime}\right)$
end if
25: end for

26: return None

Experimets

Table 1: Comparison of VLAtTACK with baselines on ViLT, Unitab, and OFA for different tasks, respectively. All results are displayed by ASR (\%). B\&A means the BERT-Attack approach.

Pre-trained Model	Task	Dataset	Image Only			BSA	Text Only		multimodality	
			DR	SSP	FDA		B\&A	R\&R	Co-Attack	VLAttack
ViLT	VQA	VQAv2	23.89	50.36	29.27	65.20	17.24	8.69	35.13	78.05
	VR	NLVR2	21.58	35.13	22.60	52.17	32.18	24.82	42.04	66.65
BLIP	VQA	VQAv2	7.04	11.84	7.12	26.36	21.04	2.94	14.24	49.26
	VR	NLVR2	6.66	6.88	10.22	27.16	33.08	16.92	8.70	52.66
Unitab	VQA	VQAv2	22.88	33.67	41.80	48.40	14.20	5.48	33.87	62.20
	REC	RefCOCO	21.32	64.56	75.24	89.70	13.68	8.75	56.48	93.52
	REC	RefCOCO+	26.30	69.60	76.21	90.96	6.40	2.46	68.69	93.40
	REC	RefCOCOg	26.39	69.26	78.64	91.31	22.03	18.52	65.50	95.61
OFA	VQA	VQAv2	25.06	33.88	40.02	54.05	10.22	2.34	51.16	78.82
	VE	SNLI-VE	13.71	15.11	20.90	29.19	10.51	4.92	18.66	41.78
	REC	RefCOCO	11.60	16.00	27.06	40.82	13.15	7.64	32.04	56.62
	REC	RefCOCO+	16.58	22.28	33.26	46.44	4.66	7.04	45.28	58.14
	REC	RefCOCOg	16.39	24.80	33.22	54.63	19.23	15.13	30.53	73.30

Table 2: Evaluation of the Uni-modal tasks on OFA. We highlight the prediction score reported by the original OFA paper with $*$

Dataset	MSCOCO				ImageNet-1K
Metric	BLEU@4 (\downarrow)	METEOR (\downarrow)	CIDEr (\downarrow)	SPICE (\downarrow)	ASR (\uparrow)
OFA $*$	42.81	31.30	145.43	25.37	-
DR	30.26	24.47	95.52	17.89	10.43
SSP	10.99	12.52	23.54	5.67	19.44
FDA	17.77	17.92	55.75	11.36	12.31
BSA (Ours)	3.04	8.08	2.16	1.50	41.35

Table 3: CLIP model evaluation on SVHN.

Dataset	SVHN	
Model	CLIP-ViT/16	CLIP-RN50
DR	3.32	71.62
SSP	6.36	84.26
FDA	6.20	83.52
BSA (Ours)	15.74	84.98

Conclusion

>Explore the adversarial vulnerability across pre-trained and fine-tuned VL models.
$>$ We propose VLATTACK to attack from different levels.
-Extensive experiments on five VL models and six tasks.
$>$ Currently, our research problem is formulated by assuming the pre-trained and downstream models share similar structures. The adversarial transferability between different pre-trained and fine-tuned models is worth exploring, which we left to our future work.

