

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion

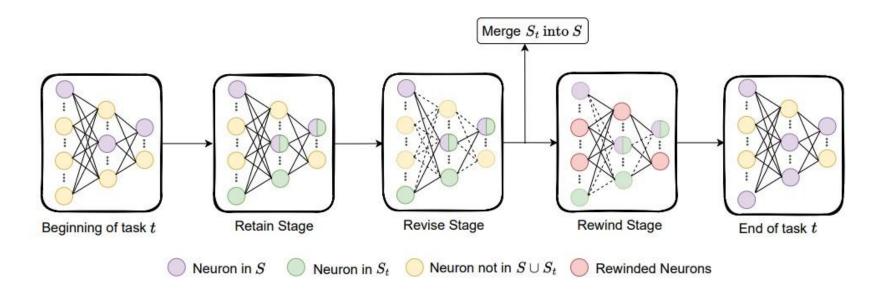
Preetha Vijayan*, Prashant Bhat*, Bahram Zonooz+, Elahe Arani+

Introduction

- Continual learning systems often struggles with **Stability-Plasticity Dilemma**.¹
- Existing Approaches: Parameter Isolation, Weight Regularization, and Experience Rehearsal.²
 - Limitations: Capacity Saturation and Scalability Issues, Class Discrimination Challenges, and Overfitting on Buffered Data.
- The human brain orchestrates CL through the dynamic interplay of neurophysiological processes,³ encompassing
 - Metaplasticity Experience replay
 - Neurogenesis Active forgetting, etc.

Hypothesis: By holistically combining these neurophysiological aspects instead of treating them as competing methods, a more comprehensive solution can be developed to address the stability-plasticity dilemma in continual learning.

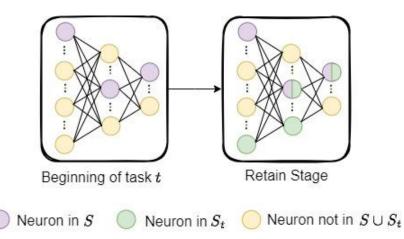
Proposed Methodology - TriRE



Inspired by the biological underpinnings of the CL mechanisms in the brain, we propose 'REtain, REvise & REwind' (TriRE), a novel CL paradigm to mitigate catastrophic forgetting.

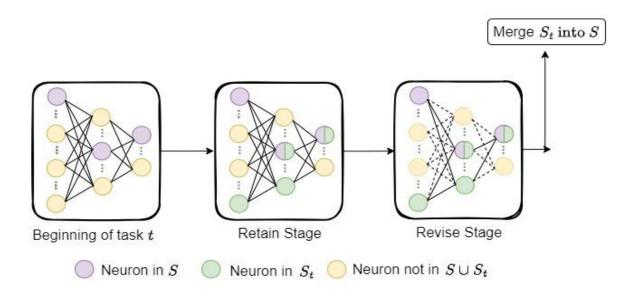
TriRE - Retain, Revise, Rewind

- Retain :
 - Inspired by the brain's use of context-dependent gating for selective filtering of neural information.
 - Induces modularity by training a hyper-network and extracting a subnetwork, S_t representing the current task's knowledge.
 - Achieved through activation pruning followed by weight pruning.



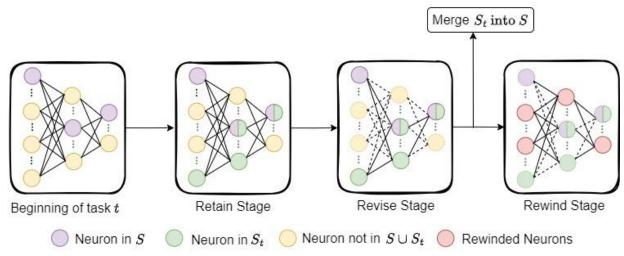
TriRE - Retain, Revise, Rewind

- Revise :
 - Draws inspiration from biological processes such as neurogenesis and metaplasticity.
 - Jointly fine-tunes the task-specific subnetwork (S_t) and the cumulative subnetwork from past tasks (S)
 - Extracted subnetwork is integrated with the cumulative mask from past tasks.



TriRE - Retain, Revise, Rewind

- Rewind :
 - Draws inspiration from the brain's active forgetting mechanism.
 - The weights not in the cumulative subnetwork is rewound to a state where it has learned essential features.
 - These weights are then fine-tuned for a few epochs using current task data.
 - This reactivates less active neurons and readies them for subsequent learning tasks.



Experimental Results

Table 1: Comparison of prior methods across various CL scenarios. We provide the average top-1 (%) accuracy of all tasks after training. [†] Results of the single EMA model.

Buffer size	Methods	Seq-CIFAR10		Seq-CIFAR100		Seq-TinyImageNet	
		Class-IL	Task-IL	Class-IL	Task-IL	Class-IL	Task-IL
-	SGD Joint	$\begin{array}{c c} 19.62 \pm 0.05 \\ 92.20 \pm 0.15 \end{array}$	${}^{61.02 \pm 3.33}_{98.31 \pm 0.12}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{40.46 \pm 0.99}{86.19 \pm 0.43}$	$07.92{\scriptstyle\pm0.26}\atop{\scriptstyle59.99{\scriptstyle\pm0.19}}$	$\frac{18.31 \pm 0.68}{82.04 \pm 0.10}$
-	LwF oEWC SI	$\begin{array}{c} 19.61 {\pm} 0.05 \\ 19.49 {\pm} 0.12 \\ 19.48 {\pm} 0.17 \end{array}$	$\begin{array}{c} 63.29{\scriptstyle\pm2.35}\\ 68.29{\scriptstyle\pm3.92}\\ 68.05{\scriptstyle\pm5.91}\end{array}$	18.47±0.14 - -	26.45±0.22	$\begin{array}{c c} 8.46 \pm 0.22 \\ 7.58 \pm 0.10 \\ 6.58 \pm 0.31 \end{array}$	$\begin{array}{c} 15.85 {\pm} 0.58 \\ 19.20 {\pm} 0.31 \\ 36.32 {\pm} 0.13 \end{array}$
200	ER DER++	44.79±1.86 64.88±1.17	$91.19{\scriptstyle \pm 0.94}\\91.92{\scriptstyle \pm 0.60}$	$\begin{array}{ } 21.40 \pm 0.22 \\ 29.60 \pm 1.14 \end{array}$	${ 61.36 {\pm 0.35} \atop 62.49 {\pm 1.02} }$	$\frac{8.57 \pm 0.04}{10.96 \pm 1.17}$	38.17±2.00 40.87±1.16
	CLS-ER [†] ER-ACE	${ \begin{array}{c} 61.88 \pm 2.43 \\ 62.08 \pm 1.44 \end{array} } \\$	$93.59{\scriptstyle \pm 0.87} \\92.20{\scriptstyle \pm 0.57}$	$\begin{array}{c} 43.38 \pm 1.06 \\ 35.17 \pm 1.17 \end{array}$	$72.01{\scriptstyle\pm0.97}\\63.09{\scriptstyle\pm1.23}$	$\frac{17.68 \pm 1.65}{11.25 \pm 0.54}$	52.60 ± 1.56 44.17 ± 1.02
	Co ² L GCR DRI	65.57 ± 1.37 64.84 ± 1.63 65.16 ± 1.13	93.43 ± 0.78 90.8 ± 1.05 92.87 ± 0.71	31.90 ± 0.38 33.69 ± 1.40	55.02 ± 0.36 64.24 ± 0.83	$\frac{13.88 \pm 0.40}{13.05 \pm 0.91}$ $\frac{17.58 \pm 1.24}{17.58 \pm 1.24}$	$\begin{array}{r} 42.37 \pm 0.74 \\ 42.11 \pm 1.01 \\ 44.28 \pm 1.37 \end{array}$
	TriRE	68.17 ±0.33	92.45±0.18	43.91±0.18	71.66±0.44	17.38 ± 1.24 20.14 ±0.19	55.95±0.78

Table 2: Comparison of the contribution of each phase in TriRE. Note that the combination of *Revise* alone or *Revise & Rewind* has not been considered, as it is not feasible without the *Retain* phase.

Retain	Revise	Rewind	Seq-CIF	FAR100	Seq-TinyImageNet	
Ketain	Kevise		Class-IL	Task-IL	Class-IL	Task-IL
1	X	×	38.01	66.23	11.54	40.22
1	1	×	33.08	60.03	8.44	31.90
1	×	1	43.03	72.09	16.25	48.89
1	1	1	43.91	71.66	20.14	55.95

- Retain focuses on reducing task interference but lacks in forward transfer and weight reuse.
- Combining Retain and Revise solidifies knowledge but encounters capacity issues.
- Retain and Rewind together encourage efficient knowledge delimitation but sacrifice forward transfer.
- Synergistic integration of all three stages consistently delivers the most robust results in both datasets.

- TriRE is an innovative CL paradigm inspired by various neurophysiological mechanisms in the brain.
- Each task in TriRE is divided into stages, including the retention of active neurons, knowledge revision, and promotion of less active neurons for future tasks.
- TriRE significantly reduces task interference and outperforms individual CL methods.
- In the Seq-TinyImageNet dataset, TriRE achieves a 14% improvement over rehearsal-based baselines, surpasses the best parameter isolation method by 7%, and nearly doubles the performance of the best weight regularization approach.
- Future research directions include reducing computational and memory overhead, adapting TriRE for task-free CL with recurring classes, and leveraging intrinsic data structures within tasks.

Thank You 🕂

Contact: Preetha Vijayan Email: preethai35@gmail.com

- 1. Mermillod, M., Bugaiska, A., & Bonin, P. (2013). The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects. *Frontiers in psychology*, *4*, 504.
- 2. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. *Neural networks*, *113*, 54-71.
- 3. Dhireesha Kudithipudi et al. "Biological underpinnings for lifelong learning machines". In: Nature Machine Intelligence 4.3 (2022), pp. 196–210.