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Quantum Many-Body Physics is Important but Challenging
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Crucial to modern quantum technologies Difficult to study

• Understand complex quantum interactions
• Study and develop new quantum materials
• Design quantum computers and other quantum

devices

• Curse of dimensionality
• Exponential cost

• Complex-valued sign or phase structure
• Sign (phase) problem

Difficult to study

Single classical bit

0 or 1       

Single qubit

𝛼𝛼 0 + 𝛽𝛽|1⟩ 

𝑵𝑵 classical bits

𝑏𝑏 = 𝑏𝑏0𝑏𝑏1 ⋯𝑏𝑏𝑁𝑁−1 

𝑵𝑵 qubits

Σ𝑏𝑏=02𝑁𝑁 𝜓𝜓(𝑏𝑏)|𝑏𝑏⟩

𝜓𝜓(𝑏𝑏): complex-valued distribution(wavefunction) 
with 2𝑁𝑁 components (intractable)

Question: How to efficiently represent 𝝍𝝍 𝒃𝒃 ?



Existing Methods
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Tensor Network (TN)

• Matrix product state (MPS), Tensor Train
• Projected entangled pair state (PEPS)
• Tree tensor network (TTN)
• Multi-scale entanglement renormalization

ansatz (MERA)

Pro: 
• Physics prior/inductive bias
• Flexible sign structure
• Customized optimization algorithm such as DMRG
Con:
• Limited representation power

𝜓𝜓 𝑥𝑥 = 

Low rank tensor decomposition to represent 𝝍𝝍(𝒙𝒙)



Existing Methods

4

• Restricted Boltzmann machine (RBM)
• Autoregressive neural network (ARNN)

• Recurrent neural network (RNN)
• Pixel convolutional neural network (PixelCNN)
• Transformer

Pro: 
• Expressive
Con:
• Lack of physics prior/inductive bias
• Hard to learn sign structure

𝜓𝜓 𝑥𝑥 = 𝜓𝜓 𝑥𝑥0 𝜓𝜓 𝑥𝑥1|𝑥𝑥0 ⋯𝜓𝜓 𝑥𝑥𝑁𝑁 𝑥𝑥<𝑁𝑁 =

Compact NN representation of 
𝝍𝝍(𝒙𝒙) via conditional wavefunctions

Neural Network (NN)



Our Method: Autoregressive Neural TensorNet (ANTN)
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ANTN bridges ARNN and TN, achieving the best of both worlds 

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝜓𝜓(𝑥𝑥)

𝜓𝜓(𝑥𝑥)

𝜓𝜓(𝑥𝑥)

ARNN
High expressivity

TN
Physics prior

ANTN (Ours)



Detailed Construction of ANTN
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Conditional probability of MPS
• MPS in right canonical form

• Marginal probability

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑥𝑥0 𝑥𝑥1

𝜓𝜓 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

𝑝𝑝(𝑥𝑥0, 𝑥𝑥1)

=

= 𝑥𝑥0 𝑥𝑥1

𝑀𝑀0 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4

𝑀𝑀0
∗ 𝑀𝑀1

∗ 𝑀𝑀2
∗ 𝑀𝑀3

∗ 𝑀𝑀4
∗

𝑀𝑀0 𝑀𝑀1

𝑀𝑀0
∗ 𝑀𝑀1

∗

𝑝𝑝 𝑥𝑥0|𝑥𝑥1 = 𝑝𝑝(𝑥𝑥0, 𝑥𝑥1)/𝑝𝑝(𝑥𝑥0)

• Conditional probability

Only depends on 𝑀𝑀0 and 𝑀𝑀1!

Construction of ANTN
Generalize conditional 
wavefunction to conditional tensors 
�𝑀𝑀 𝑥𝑥𝑖𝑖 𝑥𝑥<𝑖𝑖

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

Conditional probability and phase 
defined analogous to MPS!

Two specific constructions

• Elementwise construction
• Each tensor element

�𝑀𝑀𝛼𝛼𝑖𝑖−1𝛼𝛼𝑖𝑖 𝑥𝑥𝑖𝑖 𝑥𝑥<𝑖𝑖  gets a unique 
output from the ARNN

• Pro: flexible representation from
ARNN

• Con: higher cost → smaller
maximum bond dimension

• Blockwise construction
• Tensor elements share output

across the bond dimension (each
element still gets a unique bias)

• Pro: reduced cost → larger
maximum bond dimension

• Con: less flexible representation

𝑀𝑀0 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4



Crucial Properties of ANTN
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ANTN has generalized expressivity over 
both TN and ARNN

ANTN inherits properties from TN and 
ARNN

ANTN can be written as either TN or ARNN with 
exponentially many (in system size) parameters 

⋯

From TN:
• Exact sampling 𝑥𝑥 ∼ 𝜓𝜓 𝑥𝑥 2

• DMRG (initialization)
• Physics inductive bias
• Flexible sign structures

From ARNN:
• Exact sampling 𝑥𝑥 ∼ 𝜓𝜓 𝑥𝑥 2

• Expressivity (volume law)
• Various symmetries

• Global U(1) symmetry
• ℤ2 spin flip symmetry
• Discrete Abelian and non-Abelian symmetries
• ……

(Volume law)



Numerical Experiments (Quantum State Learning)
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Synthetic benchmark on expressivity

Random Bell states Shallow random circuits

Volume law entangled Complex sign structures

ANTN has good performance in both benchmarks

Synthetic benchmark on sign structure 



Numerical Experiments (Ground State Optimization)
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Benchmark on the challenging 
2D 𝐽𝐽1-𝐽𝐽2 Heisenberg Model

ANTN achieves state-of-the-art performance 

𝐽𝐽1𝐽𝐽2

�ℋ = 𝐽𝐽1�
𝑖𝑖,𝑗𝑗

�⃗�𝜎𝑖𝑖 ⋅ �⃗�𝜎𝑗𝑗 + 𝐽𝐽2 �
𝑖𝑖,𝑗𝑗

�⃗�𝜎𝑖𝑖 ⋅ �⃗�𝜎𝑗𝑗



Conclusion and Outlook
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Conclusion:
• ANTN bridges TN and ARNN
• ANTN generalizes the expressivity of both TN and ARNN
• ANTN inherits various properties from TN and ARNN
• ANTN achieves better performance than TN and ARNN on both quantum

state learning and the challenging 2D 𝐽𝐽1-𝐽𝐽2 Heisenberg model

Outlook:
• Generalization of ANTN to incorporate other TNs and in higher dimensions
• Applications beyond scientific applications such as supervised learning and

generative modeling

{chenzhuo,lakern,ezchen,diluo,soljacic}@mit.edu
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