Bayesian nonparametric (non-)renewal processes for analysing neural spike train variability

David Liu, Máté Lengyel

Computational and Biological Learning Lab, Department of Engineering University of Cambridge, UK

Neural variability

neural responses are variable

same for trial-free recordings, more involved to quantify variability

Gerstner et al. 2014

Fenton et al., PNAS 1998

Neural variability

stationary spike trains: use empirical estimators

nonstationary spike trains: need explicit model

t

Not just noise?

simplest case: spike count analyses with trials

look at variance, not just the mean

nontrivial features of variability:

- large, richly patterned spontaneous activity
- structure noise correlations and shared variability
- controlled by stimuli

a feature, not a bug: signatures of Bayesian inference (Ma et al. 2006, Orban et al. 2016)

Current approaches

coarse-grain by temporal binning of spikes

go beyond trial structure with model-based estimates

flexible count-based regression models:

- heteroscedastic noise models (Ghanbari et al. 2019)
- universal count models (Liu & Lengyel 2021)

analysis affected significantly by choice of bin size!

fundamentally, dealing with spike events

prob.

×

Current approaches

spiking variability, interspike interval (ISI) distribution

point process framework

conditional hazard function (CIF)

modulation by external covariates $\lambda(t|\mathcal{H}_t, \mathbf{x}_{\leq t})$

constrain CIF for tractable inference:

- factorized modulation (Teh & Rao 2011)
- Markov renewal assumption (Brown et al. 2002)
- spike-history filters

limitations of existing methods:

- parametric constraints on spiking variability
- no flexible input-dependent modulation of spiking variability, i.e. ISI distribution shape

Generative model

nonparametric non-renewal (NPNR) process

Gaussian process prior over log CIF $f(\tau, \boldsymbol{x}_t) \sim \mathcal{GP}(m(\tau, \boldsymbol{x}), k_t(\tau, \tau') \cdot k_x(\boldsymbol{x}, \boldsymbol{x}'))$ inputs provide history dependence beyond renewal order (previous spike) $\log \lambda(t|\mathcal{H}_t, \boldsymbol{x}_t) = f(\tau, \boldsymbol{\Delta}_t, \boldsymbol{x}_t)$ prior over CIF \Leftrightarrow prior over conditional ISI distributions $g(\tau|\boldsymbol{\Delta}_t, \boldsymbol{x}_{(t_i,t]}) \propto \lambda(t|\mathcal{H}_t, \boldsymbol{x}_t) \cdot e^{-\int_{t_i}^t \lambda(t'|\mathcal{H}_{t'}, \boldsymbol{x}_{t'}) dt'}$

Α В С non-refractory prior refractory prior 0.3 (s) 0.0 $(a_m = 0)$ $(a_m = -6)$ 11 11 1 1 1 11 1 111 log CIF 0 4 ∇^1 density time -5 Δ_2 τ̃ (a.u.) $\tau_w = \langle |S| \rangle$ 2 ISI distribution X1 τ̃ (a.u.) X2 density time τ (s) 0 time 3

Inference

variational approach, time discretization

posterior flexibly captures modulation by time-varying covariates

posterior over modulated ISI distributions, ISI moments

model-based estimates of spike train statistics:

- firing rate as reciprocal mean ISI $1/\mathbb{E}[\tau]$
- coefficient of variation (CV) $\sqrt{Var[\tau]}/\mathbb{E}[\tau]$

requires evaluating GP posterior at many locations (Wilson et al. 2020)

$$\mathbb{E}_{g(\tau)}[\tau^m] = \int_0^\infty g(\tau) \, \tau^m \, \mathrm{d}\tau$$

Goodness-of-fit for point processes

time-rescaling

Kolmogorov-Smirnov goodness-of-fit test

$$ar{t}(t) = \int^t \lambda(t'|\dots) \,\mathrm{d}t'$$
 $qig(ar{\Delta}ig) = F_{\mathrm{exp}}ig(ar{\Delta}ig) = 1 - e^{-ar{\Delta}}$
 $T_{\mathrm{KS}} = \max_q |F(q) - q|$

Validation on synthetic data

rate-rescaled renewal process

generative procedure:

- sample events from homogeneous renewal process
- compute rate as function of time
- compute cumulative rate
- obtain rescaled event times

Validation on synthetic data

Mouse head direction cells

recording from antero-dorsal subnucleus (ADn) and postsubiculum (PoS) (Peyrache et al. 2015)

freely moving chasing food pellets

Mouse head direction cells

Mouse head direction cells

Rat place cells

recording from CA1 (Mizuseki et al. 2009)

running along linear track

Rat place cells

Rat place cells

Summary

nonparametric non-renewal processes for neural spike train data

analysis of neural data:

- both over- and underdispersed regimes
- variability tends to increase with firing rate
- firing rate and CV can be decoupled

further work:

- latent variable modeling
- additional spike train statistics

Human Frontier Science Program

Additional validation results

Additional head direction data analysis

Additional head direction data analysis

Additional place cell data analysis

Additional place cell data analysis

Additional place cell data analysis

