Advances in Neural Information Processing Systems 37 (NeurIPS 2023)

Global Update Tracking (GUT)

Sai Aparna Aketi, Abolfazl Hashemi, Kaushik Roy

Problem of non-IID Data

🖬 Africa 🗆 Americas 🐔 Asia 🖨 Europe 🗈 Oceania

Significant skew in data distribution

Traditional decentralized learning algorithms :

- Assume IID data
- Performance degradation with non-IID
- o 10-15% drop with CIFAR-10 on 16 nodes ring

Decentralized Learning on Heterogeneous Data

Method	Communication	Memory	Compute		
D ² (Exact Diffusion)	1x	m	Bias estimation	ו	
Gradient Tracking	2x	2m	Bias estimation		
Cross Gradient Aggregation	2x	nm	Cross gradients computation, QP step]}	SGD step
NGM	2x	0	Cross gradients computation, bias estimation	J	
Relay SGD	1x	2m	Relay computation	┢	Modifies gossip
Quasi Global Momentum	1x	m	-		Modifies Momentum
Momentum Tracking	2x	2m	Bias estimation		Momentum

m = model size, n = number of neighbors

Can we achieve the effects of compute efficient gradient tracking (bias correction) without additional communication round?

D-PSGD vs Gradient Tracking

D-PSGD

Gradient Tracking (GT)

Scalability

Step 1: Update Sharing

Idea: Share model updates rather than model parameters by keeping track of neighbors' model parameters -- Local update -- Gossip update

D-PSGD Update:
$$x_i^{t+1} = x_i^t - \eta \left[g_i^t + \frac{1}{\eta} \sum_{j \in N(i)} w_{ij} (x_i^t - x_j^t) \right]$$
 Communicate x's
Communicate model updates *i. e.*, $x_j^t - x_j^{t-1}$
and store neighbors' parameters as \hat{x}_j^{t-1}
 $x_i^{t+1} = x_i^t - \eta \left[g_i^t + \frac{1}{\eta} \sum_{j \in N(i)} w_{ij} * (x_i^t - \hat{x}_j^t) \right]$ and $\hat{x}_j^t = \hat{x}_j^{t-1} - \eta \delta_j^t$ Communicate δ 's
 δ_i^t Copy of neighbors' parameters
 $(\hat{x}_j^t = x_j^t)$
Model update
 $= |\text{local update + gossip update}$

Memory efficient implementation of this algorithm stores $s_i = \sum_{j \in N(i)} w_{ij} \hat{x}_j$ instead of each neighbors' copy separately

Step 2: Incorporate Tracking

Modified D-PSGD Update: $x_i^{t+1} = x_i^t - \eta \delta_i^t$ and $\delta_i^t = g_i^t + \frac{1}{n} \sum_{j \in N(i)} w_{ij} * (x_i^t - \hat{x}_j^t)$ Communicate $\delta's$ Add tracking to variable δ $x_i^{t+1} = x_i^t - \eta y_i^t$ and $y_i^t = \sum_{j \in N(i)} w_{ij} * y_j^{t-1} + \delta_i^t - \delta_i^{t-1}$ Communicate y's Scaling and reference correction Tracking $x^{t+1} - x^t - x^t$

Global Update Tracking:
$$x_i^{t+1} = x_i^t - \eta y_i^t$$

 $y_i^t = \delta_i^t + \mu \left[\sum_{j \in N(i)} w_{ij} * (y_j^{t-1} + \frac{1}{\eta} (x_i^t - \hat{x}_j^t)) - \delta_i^{t-1} \right]$
Scaling
factor
Reference
correction

Convergence Guarantees

• Objective: Minimize global loss function f(x) distributed across *n* agents

$$\min_{x} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \quad \text{where } f_i(x) = \mathbb{E}_{d_i \sim D_i}[F_i(x, d_i)]$$

Assumptions

- **1.** Lipschitz Gradients: The loss function on each agent is L-smooth i.e., $||\nabla f_i(y) \nabla f_i(x)|| \le L ||y x||$
- 2. Bounded Variance: $\mathbb{E}_{d \sim D_i} ||\nabla F_i(x, d) \nabla f_i(x)||^2 \le \sigma^2$ and $\frac{1}{n} \sum_{i=1}^n ||\nabla f_i(x) \nabla f(x)||^2 \le \zeta^2$
- **3**. Doubly Stochastic Mixing Matrix (W): $\lambda_1 = 1$, $max\{|\lambda_2|, |\lambda_n|\} \le 1 \rho < 1$
- We show that GUT achieves linear speed up with a convergence rate of $\mathcal{O}\left(rac{1}{\sqrt{nT}}\right)$

Lemma 1. Given assumptions 3, we define $\bar{b}^t = B^t \frac{1}{n} \mathbb{1} \mathbb{1}^T$, where $\mathbb{1}$ is a vector of all ones. For all t, we have: $\bar{b}^t = \mu \bar{b}^{t-1}$.

Theorem 1. (Convergence of GUT algorithm) Given Assumptions 1, 2, and 3 let step size $\eta \leq \frac{\rho}{7L}$ and the scaling factor $\frac{\mu}{1-\mu} \leq \frac{\rho}{42}$. For all $T \geq 1$, we have

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}||\nabla f(\bar{x}^t)||^2 \le \frac{4}{\eta T} (f(\bar{x}^0) - f^*) + \eta \frac{4L\sigma^2}{n} + \eta^2 \frac{1248L^2}{\rho^2} (\zeta^2 + \sigma^2(2-\mu)),$$

where $f(\bar{x}^0) - f^*$ is the sub-optimality gap, \bar{x} is the average/consensus model parameters.

Experimental Setup

- All the hyperparameters are synchronized across the nodes
- Stopping criteria: Fixed number of epochs
- The results are averaged over 3 seeds
- \succ Dirichlet Distribution: Smaller the α , larger the heterogeneity in the data distribution

Comparison with existing techniques

1x Communication	D-PSGD: Assumes IID distributions	Baseline for GUT
	Relay-SGD: Works on spanning trees	
	D ² : Not compatible for all graphs	—
	QGM: Uses quasi-global momentum	Can be used in synergy
	NGM _{mv} : Compute Heavy	
	Global Update Tracking (this work)	m

D-PSGD + QGM: QG-DSGDm is compared with GUT+QGM: QG-GUTm

16 agents 32 agents 90 80 70 60 50 40 alpha=0.1 alpha=1 alpha=1 alpha=0.01 alpha=0.1 alpha=0.01 GUT QG-DSGDm QG-GUTm

CIFAR-10 trained on ResNet-20 over ring topology with varying degree of skew

1.2% average improvement over QG-DSGDm

Results: Various Datasets and Graph Topologies

Generalizability:

- Compare QG-GUTm with QG-DSGDm
- Various graph topologies: 1.5% improvement on an average
- Various datasets: 2.5% improvement on an average

Analysis of CIFAR-10 trained on ResNet-20 over various graph topologies

Method	Dyck Graph (32 agents)			Torus (32 agents)		
	$\alpha = 0.1$	lpha = 0.01	-	lpha=0.1	$\alpha = 0.01$	
QG-DSGDm	86.49 ± 0.81	81.32 ± 1.50		86.88 ± 0.30	85.20 ± 0.56	
QG-GUTm (ours)	86.93 ± 0.53	84.80 ± 0.47		87.75 ± 0.42	86.20 ± 0.82	

Analysis of various datasets trained over ring topology with 16 agents

Method	Fashion MNIST (LeNet-5)		CIFAR-100 (ResNet-20)		Imagenette (MobileNet-V2)	
Wiethou	lpha = 0.1	lpha=0.01	lpha=0.1	lpha=0.01	lpha = 0.1	lpha=0.01
QG-DSGDm	89.94 ± 0.44	83.43 ± 0.94	53.19 ± 1.68	44.17 ± 3.64	63.60 ± 4.50	39.49 ± 4.57
QG-GUTm	90.11 ± 0.02	84.60 ± 1.00	53.40 ± 1.23	50.45 ± 1.30	66.52 ± 3.68	43.85 ± 8.24

Ablation Study

Scalability:

- Compare QG-GUTm with QG-DSGDm
- Number of agents: 1.7% improvement on an average
- Depth of ResNet: 1.4% improvement on an average

CIFAR-10 dataset trained on ResNet architecture over ring topology

Analysis of overheads

Overheads comparison

- No communication overhead
- o $\mathcal{O}(1)$ memory overhead in terms of model
- Minimal compute overhead less than 2% for compact models
- Memory and compute overheads are independent of graph type and size

Memory and compute overhead incurred per agent during training	

Dataset	Model	Memory Overhead	Compute Overhead
Fashion MNIST	LeNet-5	0.099	0.275
CIFAR-10	ResNet-20	0.016	0.021
CIFAR-10	VGG-11	0.138	0.149
CIFAR-100	ResNet-20	0.016	0.022
Imagenette	MobileNet-V2	0.005	0.021

Summary

Proposed Global Update Tracking

- Generate a proxy to gradient tracking variable utilizing shared model updates of the neighborhood
- ✓ No communication overhead
- $\checkmark O(1)$ memory overhead
- Exhaustive experiments show the efficiency, scalability and generalizability of the proposed method
- ✓ Performance improvement of 1-6% on non-IID data over the current SoTA
- Theoretically show that GUT has same convergence rate as the state-of-the-art decentralized methods.

Conclusion

Thank You!