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Cross-Device Federated Learning
§ Federated Learning (FL): Multiple clients collaborate to train a machine 

learning model under the orchestration of a central server, without sharing 
their raw data [1]. 

§ Cross-Device FL: The clients are a very large number of mobile/IoT devices.
- Only a small part of clients (a.k.a. source clients) are sampled for training. 
- However, the model also needs to be deployed on clients

that do not participate in FL training (a.k.a. target clients). 
- Clients typically have their own distributions with distribution

shifts, e.g., feature shift, label shift. 

§ Question: How to generalize to unparticipating clients
under distribution shifts? 

- 2 -

？



- 3 -

Generalization to Target Clients
Global FL Personalized FL Test-Time Personalized FL

Adaptation to each client No ☹ Yes 😊 Yes 😊
Data requirement No 😊 Additional labeled data ☹ Unlabeled testing data😊
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Drawbacks of Current Methods
§ Test-Time Adaptation (TTA) methods 

can be applied to TTPFL. 

§ Drawback 1: TTA assumes single 
source domain and neglects the 
interrelationship among source clients. 

§ Drawback 2: Most TTA methods are 
customized for specific distribution shifts 
and lack the flexibility to address diverse 
types of distribution shifts in FL. 
- The inflexibility largely results from their 

predefined selection of modules to adapt. 
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§ Motivation: Which modules to adapt should depend on the type of 
distribution shifts among clients, which can be inferred from source clients. 

§ We propose Adaptive Test-Time Personalization (ATP) to learn the 
adaptation rates for each module. 
- Modules with larger adaptation rates are adapted to a greater extend, and vice versa. 
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Adaptive Test-Time Personalization
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Adaptive Test-Time Personalization

Unsupervised
adaptationGlobal model 𝒘!

Adaptation rate 𝜶

Personalized model 𝒘"

Unlabeled data 𝑿" Labeled data 𝑿" , 𝒀"

Delete label1. Each source client 
simulates unsupervised 
adaptation based on 
entropy minimization

𝒉' is the update direction of unsupervised adaptation, 
𝑨 maps each adaptation rate to the model parameters 
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Adaptive Test-Time Personalization
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Adaptive Test-Time Personalization
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Delete label3. The adaptation rates 
are averaged among 
source clients in each 
communication round
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Generalization Guarantee

§ Finding 1: Generalization benefits from low dimensionality of adaptation rates 𝑑
§ Finding 2: Generalization benefits from utilizing multiple sources. 

The bound gets loose if merging 𝑁 source domains with 𝐾 samples into one domain with 𝑁𝐾
samples  𝑁,𝐾 ← 1,𝑁𝐾



ATP Can Handle Different Distribution Shifts
§ CIFAR-10(C) experiment

- Feature shift: Each client has a random 
type of image corruption [1]. 

- Label shift: Each client has 2 majority 
classes and 8 minority classes. 

- Hybrid shift: Feature + label shift. 

§ ATP consistently improves the 
performance across different types 
of distribution shifts. 
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Accuracy over target clients (mean ± s.d.)

[1] Dan Hendrycks, Thomas G. Dietterich. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. ICLR 2019. 

(We also conduct experiments on Digits-5 and PACS.)



ATP Learns Shift-Specific Adaptation Rates
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§ We train and test adaptation rates 
with different types of distribution shift. 
- ATP performs the best when training and 

testing under the same type of distribution 
shift. 

Accuracy over target clients (mean ± s.d.)
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§ We train and test adaptation rates 
with different types of distribution shift. 
- ATP performs the best when training and 

testing under the same type of distribution 
shift. 

- The adaptation rates trained under feature 
shifts have negative impact on label shifts, 
and vice versa. 

Accuracy over target clients (mean ± s.d.)



ATP Learns Shift-Specific Adaptation Rates
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§ We train and test adaptation rates 
with different types of distribution shift. 
- ATP performs the best when training and 

testing under the same type of distribution 
shift. 

- The adaptation rates trained under feature 
shifts have negative impact on label shifts, 
and vice versa. 

- The adaptation rates trained under hybrid 
shift are also beneficial for feature and 
label shifts. 

Accuracy over target clients (mean ± s.d.)



§ TTPFL framework: It is important and feasible to personalize a model on 
novel unlabeled clients in cross-device federated learning. 

§ ATP algorithm: Which modules to adapt should depend on the type of 
distribution shifts among clients, which can be inferred from source clients. 
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Key Takeaways
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