

Adaptive Test-Time Personalization for Federated Learning

Wenxuan Bao*

Tianxin Wei*

Haohan Wang

Jingrui He

University of Illinois Urbana-Champaign {wbao4,twei10,haohanw,jingrui}@illinois.edu baowenxuan.github.io, weitianxin.github.io haohanwang.github.io, hejingrui.org

Cross-Device Federated Learning

- Federated Learning (FL): Multiple clients collaborate to train a machine learning model under the orchestration of a central server, without sharing their raw data [1].
- Cross-Device FL: The clients are a very large number of mobile/IoT devices.
 - Only a small part of clients (a.k.a. source clients) are sampled for training.
 - However, the model also needs to be deployed on clients that do not participate in FL training (a.k.a. *target clients*).
 - Clients typically have their own distributions with *distribution shifts*, e.g., feature shift, label shift.
- Question: How to generalize to unparticipating clients under distribution shifts?

[1] Peter Hairouz, H. Brendan Mcmahan et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 14(1-2): 1-210 (2021) Image source: https://en.wikipedia.org/wiki/Federated_learning

Generalization to Target Clients

Drawbacks of Current Methods

- Test-Time Adaptation (TTA) methods can be applied to TTPFL.
- Drawback 1: TTA assumes single source domain and neglects the interrelationship among source clients.
- Drawback 2: Most TTA methods are customized for specific distribution shifts and lack the flexibility to address diverse types of distribution shifts in FL.
 - The inflexibility largely results from their **predefined selection of modules to adapt.**

- Motivation: Which modules to adapt should depend on the type of distribution shifts among clients, which can be inferred from source clients.
- We propose Adaptive Test-Time Personalization (ATP) to learn the adaptation rates for each module.
 - Modules with larger adaptation rates are adapted to a greater extend, and vice versa.

 h_k is the update direction of unsupervised adaptation, A maps each adaptation rate to the model parameters

Ι

Theorem 5.1 (Generalization for hypothesis space). Let $\mathcal{H} = \{\alpha : \|\alpha\|_2 \leq R\}$ be the hypothesis space (space of adaptation rates), N be the number of source clients, and K be the number of data batches on each source client. Assuming (1) L-Lipschitz model, and (2) H-module-wise-bounded update direction. For any fixed global model w_G and any $\epsilon > 0$, we have

$$\Pr(\sup_{\boldsymbol{\alpha}\in\mathcal{H}}|\varepsilon(\boldsymbol{\alpha})-\hat{\varepsilon}(\boldsymbol{\alpha})|\geq\epsilon)\leq \left(\frac{12LHR}{\epsilon}\right)^{d}\cdot 4\exp\left(-\frac{NK\epsilon^{2}}{2(\sqrt{K}+1)^{2}}\right)$$

where $\hat{\varepsilon}(\alpha)$ is the average **post-adaptation** error rate on source clients, and $\varepsilon(\alpha)$ is the expected **post-adaptation** error rate on clients' population.

- **Finding 1**: Generalization benefits from low dimensionality of adaptation rates *d*
- Finding 2: Generalization benefits from utilizing multiple sources.

The bound gets loose if merging N source domains with K samples into one domain with NK samples $(N, K) \leftarrow (1, NK)$

ATP Can Handle Different Distribution Shifts

CIFAR-10(C) experiment

- Feature shift: Each client has a random type of image corruption [1].

Speckle Noise Gaussian Blur

Spatter

- Label shift: Each client has 2 majority classes and 8 minority classes.

- Hybrid shift: Feature + label shift.

 ATP consistently improves the performance across different types of distribution shifts.

Accuracy over target clients (mean ± s.d.)

Method	Feature shift	Label shift	Hybrid shift	Avg. Rank
No adaptation	69.42 ± 0.13	$\textbf{72.98} \pm \textbf{0.24}$	63.68 ± 0.24	7.7
BN-Adapt	$\textbf{73.52} \pm \textbf{0.22}$	$\textbf{54.54} \pm \textbf{0.10}$	$\textbf{50.42} \pm \textbf{0.39}$	7.0
SHOT	$\textbf{71.76} \pm \textbf{0.17}$	$\textbf{48.13} \pm \textbf{0.18}$	$\textbf{44.68} \pm \textbf{0.32}$	9.3
Tent	$\textbf{71.76} \pm \textbf{0.09}$	$\textbf{50.13} \pm \textbf{0.21}$	$\textbf{46.05} \pm \textbf{0.26}$	8.3
ТЗА	69.53 ± 0.08	$\textbf{71.70} \pm \textbf{0.32}$	$\textbf{62.17} \pm \textbf{0.17}$	8.0
MEMO	$\textbf{72.43} \pm \textbf{0.22}$	$\textbf{77.30} \pm \textbf{0.15}$	$\textbf{68.07} \pm \textbf{0.28}$	4.3
EM	$\textbf{65.18} \pm \textbf{0.12}$	$\underline{\textbf{80.73} \pm \textbf{0.18}}$	69.85 ± 0.43	5.0
BBSE	$\textbf{63.98} \pm \textbf{0.17}$	$\textbf{79.30} \pm \textbf{0.17}$	$\textbf{67.96} \pm \textbf{0.43}$	6.7
Surgical	$\textbf{69.85} \pm \textbf{0.22}$	$\textbf{76.00} \pm \textbf{0.17}$	$\textbf{66.94} \pm \textbf{0.43}$	6.3
ATP-batch	$\underline{\textbf{73.68} \pm \textbf{0.10}}$	$\textbf{79.90} \pm \textbf{0.22}$	$\underline{\textbf{73.05}\pm\textbf{0.35}}$	<u>2.3</u>
ATP-online	$\textbf{74.06} \pm \textbf{0.18}$	$\textbf{81.96} \pm \textbf{0.14}$	$\textbf{75.37} \pm \textbf{0.22}$	1.0

(We also conduct experiments on Digits-5 and PACS.)

[1] Dan Hendrycks, Thomas G. Dietterich. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. ICLR 2019.

ATP Learns Shift-Specific Adaptation Rates

- We train and test adaptation rates with different types of distribution shift.
 - ATP performs the best when training and testing under the same type of distribution shift.

Accuracy over target clients (mean ± s.d.)

	Test		
Train	Feature shift	Label shift	Hybrid shift
No adaptation	69.42 ± 0.13	$\textbf{72.98} \pm \textbf{0.24}$	63.68 ± 0.24
Feature shift	$\textbf{73.68} \pm \textbf{0.10}$	$\textbf{65.05} \pm \textbf{1.82}$	$\textbf{60.64} \pm \textbf{1.43}$
Label shift	$\textbf{67.99} \pm \textbf{0.28}$	$\textbf{79.90} \pm \textbf{0.22}$	69.50 ± 0.52
Hybrid shift	$\textbf{72.69} \pm \textbf{0.14}$	$\textbf{78.92} \pm \textbf{0.34}$	$\textbf{73.05} \pm \textbf{0.35}$

ATP Learns Shift-Specific Adaptation Rates

Anne La

- We train and test adaptation rates with different types of distribution shift.
 - ATP performs the best when training and testing under the same type of distribution shift.
 - The adaptation rates trained under feature shifts have negative impact on label shifts, and vice versa.

Accuracy over target clients (mean ± s.d.)

	Test			
Train	Feature shift	Label shift	Hybrid shift	
No adaptation	69.42 ± 0.13	$\textbf{72.98} \pm \textbf{0.24}$	63.68 ± 0.24	
Feature shift	$\textbf{73.68} \pm \textbf{0.10}$	$\textbf{65.05} \pm \textbf{1.82}$	$\textbf{60.64} \pm \textbf{1.43}$	
Label shift	$\textbf{67.99} \pm \textbf{0.28}$	$\textbf{79.90} \pm \textbf{0.22}$	69.50 ± 0.52	
Hybrid shift	$\textbf{72.69} \pm \textbf{0.14}$	78.92 ± 0.34	$\textbf{73.05} \pm \textbf{0.35}$	

ATP Learns Shift-Specific Adaptation Rates

A-------

- We train and test adaptation rates with different types of distribution shift.
 - ATP performs the best when training and testing under the same type of distribution shift.
 - The adaptation rates trained under feature shifts have negative impact on label shifts, and vice versa.
 - The adaptation rates trained under hybrid shift are also beneficial for feature and label shifts.

Accuracy over target clients (mean ± s.d.)

		Test	
Train	Feature shift	Label shift	Hybrid shift
No adaptation	69.42 ± 0.13	$\textbf{72.98} \pm \textbf{0.24}$	63.68 ± 0.24
Feature shift	$\textbf{73.68} \pm \textbf{0.10}$	$\textbf{65.05} \pm \textbf{1.82}$	$\textbf{60.64} \pm \textbf{1.43}$
Label shift	$\textbf{67.99} \pm \textbf{0.28}$	$\textbf{79.90} \pm \textbf{0.22}$	69.50 ± 0.52
Hybrid shift	$\textbf{72.69} \pm \textbf{0.14}$	$\textbf{78.92} \pm \textbf{0.34}$	$\textbf{73.05} \pm \textbf{0.35}$

Key Takeaways

- TTPFL framework: It is important and feasible to personalize a model on novel unlabeled clients in cross-device federated learning.
- ATP algorithm: Which modules to adapt should depend on the type of distribution shifts among clients, which can be inferred from source clients.

Paper

Code

Personal

