Matrix Compression via Randomized Low Rank and Low Precision Factorization

Rajarshi Saha, Varun Srivastava, Mert Pilanci

Dec 10 - Dec 16, 2023 New Orleans

Saha, Srivastava, Pilanci

Matrix Compression

 Matrices are ubiquitous – can involve billions of elements making their storage and processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

Matrix Compression

 Matrices are ubiquitous – can involve billions of elements making their storage and processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

 Several real-world matrices exhibit approximately low-rank structure due to inherent redundancy or patterns. [Udell & Townsend, 2019]

Matrix Compression

 Matrices are ubiquitous – can involve billions of elements making their storage and processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

- Several real-world matrices exhibit approximately low-rank structure due to inherent redundancy or patterns. [Udell & Townsend, 2019]
- Singular value decomposition: Any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ can written as:

$$\mathbf{A} = \sum_{i=1}^{\mathrm{rank}(\mathbf{A})} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top},$$

where $\{\sigma_i\}$ are the singular values, and $\mathbf{u}_i \in \mathbb{R}^n$, $\mathbf{v}_i \in \mathbb{R}^d$ are singular vectors.

- Question: How to compress matrices via dimensionality reduction and quantization?
- Our solution uses Randomized Embeddings.

Saha, Srivastava, Pilanci

イロト 不得 トイヨト イヨト

Matrix Compression: Low-precision and Low-Rank

- We obtain a randomized factorization, $A \approx LR$, where the entries of left factor (L) and right factor (R) are quantized with B and B' bits per entry respectively.
- Total bit requirement is mnB + mdB'.
- By tuning sketch-size *m* we can ensure compression while letting B and B' to take values allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.
- Low-precision computations also have low latency: Computing Ax versus L(Rx).

→ Ξ →

Matrix Compression: Low-precision and Low-Rank

Our LPLR algorithm:

- Computes randomized rangefinder AS, and quantizing it.
- Computes approximate projection of the columns of A onto this quantized basis.

Algorithm 1: LPLR: Randomized Low-Precision Low-Rank factorization

Input :Matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, sketch size m, Quantizers Q, Q' with dynamic ranges R_Q , $R_{Q'}$ and bit-budgets B, B' respectively. Output :Factorization: LR where $L \in \mathbb{R}^{n \times m}$, $\mathbf{R} \in \mathbb{R}^{m \times d}$

- 1 Sample a Gaussian sketching matrix $\mathbf{S} \in \mathbb{R}^{d \times m}$ with entries $S_{ij} \sim \mathcal{N}(0, \frac{1}{m})$.
- 2 Compute an approximate basis of column space of A by forming the sketch: AS.
- ³ Quantize the approximate basis with Q to get Q(AS).
- 4 Find $\mathbf{W}^* = \arg \min_{\mathbf{W}} \| \mathbf{Q}(\mathbf{AS})\mathbf{W} \mathbf{A} \|_{\mathrm{F}}^2$.
- 5 Quantize \mathbf{W}^* using quantizer \mathbf{Q}' to get $\mathbf{Q}'(\mathbf{W}^*)$.

6 return Low-rank and low-precision approximation LR where L = Q(AS), $R = Q'(W^*)$.

Matrix Compression: Low-precision and Low-Rank

- We obtain a factorization, $A \approx LR$, where the entries of L and R are quantized with B and B' bits per entry respectively.
- (A popular benchmark) Naive quantization: Quantize each entry of $\mathbf{A} \in \mathbb{R}^{n \times d}$ uniformly with a B_{nq} bit quantizer.
- Compression ratio with respect to naive quantization is <u>mnB+mdB'</u>.
- By tuning sketch-size m we can ensure compression ratio ≤ 1 for $B_{nq}=1,$ while letting B and B' to take values allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.
- Direct-SVD quant. benchmark: Compute the best rank-k approximation (U∑)_kV[⊤]_k by retaining the top-k singular vectors, and subsequently quantize: A ≈ Q((U∑)_k)Q'(V[⊤]_k).

< □ > < 同 > < 回 > < Ξ > < Ξ

Image compression

Original

Naive

DSVD

LPLR (ours)

 $\textbf{LSVD} \; (ours)$

Compressing a brain MRI. B = 4, B' = 8, $B_{nq} = 1$, m = 124, n = 1534 d = 1433

Original

Naive

DSVD

LPLR (ours)

LSVD (ours)

Compression of a Jupiter image showing its Great Red Spot and Ganymede's shadow (NASA/ESA Hubble Space Telescope). B = 2, B' = 8, $B_{nq} = 1, m = 110$. Orig. image dim.: 1102×1102

Approximate nearest neighbor search

• For a given data matrix $\mathbf{A} \in \mathbb{R}^{n imes d}$ and a query $\mathbf{x} \in \mathbb{R}^d$, retrieve

$$i^* = \operatorname{argmax}_{i \in [n]} (\mathbf{Ax})_i \approx \operatorname{argmax}_{i \in [n]} (\mathbf{LRx})_i$$

 Applications: Semantic search over vector databases (music recommendation), In-context learning for LLMs, etc.

Table 5: CIFAR100 embeddings generated by MobileNetV3 with an unquantized accuracy and F1 score 76%:Results on LPLR and LPLR-SVD with B = B' = 8 bits

	Frobenius Norm Error				Accuracy (%)				Weighted F1 Score (%)			
B_{nq}	LPLR	LSVD	DSVD	NQ	LPLR	LSVD	DSVD	NQ	LPLR	LSVD	DSVD	NQ
1	1.04	1.08	1.09	6.75	79	82	82	1	79	82	82	0
2	1.08	1.1	1.12	2.18	80	80	80	1.7	80	80	80	1.3
4	1.11	1.12	1.14	1.17	79	78	77	75	79	78	78	75

Table 6: IMDB embeddings generated by BERT with an unquantized accuracy and F1 score 75% and 74% respectively: Results on LPLR and LPLR-SVD with B=B'=8 bits

	Frobenius Norm Error				Accuracy (%)				Weighted F1 Score (%)			
B_{nq}	LPLR	LSVD	DSVD	NQ	LPLR	LSVD	DSVD	NQ	LPLR	LSVD	DSVD	NQ
1	0.313	0.241	0.229	6.63	73	74	75	50	74	74	75	33
2	0.235	0.178	0.161	1.016	74	74	74	50	74	74	74	50
4	0.148	0.122	0.098	0.417	75	74	75	73	74	74	75	73

Compressing weight matrices of LLMs

• LIaMa 7b [Touvron et. al, 2023]: An LLM with several layers (difficult to deploy on GPUs)

Comparison of LPLR and LPLR-SVD on LlaMa weight matrices with $B=B^\prime=8$ bits, $B_{nq}=4$ bits, ordered by the original sequence of layers on the "Layer" – axis. We observe consistently better Frobenius norm error using LPLR and LPLR-SVD, with the exception of specific layers which lend themselves to naive quantization.

${\rm B}={\rm B}'=8$ bits, ${\rm B}_{\rm nq}=4$ bits								
Metric	LPLR	LPLR-SVD	Naive Quant.					
Mean	0.672	0.537	0.836					
Std Dev	0.080	0.079	0.470					

Average relative Frobenius norm error on LlaMa weight matrices

Theoretical analysis

- Approximation error upper bounds on the Frobenius norm $\|\mathbf{LR} \mathbf{A}\|_{\mathrm{F}}^2$.
- Bit requirement: How many bits are required per matrix coordinate to achieve the corresponding approximation error?
- Computation requirement: No. of floating point multiplications of the rate determining step. O(ndm) for LPLR vs. O(nd²) for direct-SVD quant.
- Properties of randomized embeddings useful for LPLR factorization:
 - Subspace approximation: For approximately low-rank matrices $\mathbf{A} \in \mathbb{R}^{n \times d}$, randomly sketching the columns, i.e., $\mathbf{AS} \in \mathbb{R}^{n \times m}$ constitutes a basis for range(\mathbf{A}) with high probability.

[Halko et. al, 2011; Witten & Candes, 2015; Tropp et. al, 2017, ...]

• Democratic equalization: $\|\mathbf{AS}\|_{\max} \triangleq \max_{i,j} |A_{ij}|$ is "small" with high probability.

[Charikar, 2002; Boufounos & Baraniuk, 2008; Plan & Vershynin, 2014, Lyubarskii & Vershynin, 2006; Studer et. al. 2015, ...]

Details in paper

- 1. Randomized-embedding based matrix compression: Low precision and low rank representations.
- 2. Computationally efficient: O(ndm), $m \ll \min\{n, d\}$ for randomized-embedding based LPLR vs. $O(nd^2)$ for direct-SVD based methods.
- 3. Sketch size *m* is a tunable knob. Allows flexible compression ratios that achieve parity with (aggressive) quantization as low as a *single* bit (using current hardware primitives).
- 4. Provably better approximation error guarantees (Details in paper).
- 5. Applications in compressing datasets, neural network weights, approximate nearest neighbors, etc.

<ロト < 同ト < ヨト < ヨ)

Thank you!

Reach out for questions or discussions: rajsaha@stanford.edu

Poster Session:

Tue 12 Dec 10:45 a.m. CST — 12:45 p.m. CST, Great Hall & Hall B1+B2 #1824 https://neurips.cc/virtual/2023/poster/70291

> Paper: https://openreview.net/forum?id=rxsCTtkqA9 GitHub: https://github.com/pilancilab/matrix-compressor

イロト イヨト イヨト