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Matrix Compression

• Matrices are ubiquitous – can involve billions of elements making their storage and
processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

• Several real-world matrices exhibit approximately low-rank structure due to inherent
redundancy or patterns. [Udell & Townsend, 2019]

• Singular value decomposition: Any matrix A ∈ Rn×d can written as:

A =

rank(A)∑
i=1

σiuiv
⊤
i ,

where {σi} are the singular values, and ui ∈ Rn, vi ∈ Rd are singular vectors.

• Question: How to compress matrices via dimensionality reduction and quantization?

• Our solution uses Randomized Embeddings.
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Matrix Compression: Low-precision and Low-Rank

A

Full-precision

d

n ≈ L

m

n

B bits

R m

d

B’ bits

m ≪ min{n,d}

• We obtain a randomized factorization, A ≈ LR, where the entries of left factor (L) and
right factor (R) are quantized with B and B′ bits per entry respectively.

• Total bit requirement is mnB + mdB′.

• By tuning sketch-size m we can ensure compression while letting B and B′ to take values
allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.

• Low-precision computations also have low latency: Computing Ax versus L(Rx).
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Our LPLR algorithm:

◦ Computes randomized rangefinder AS, and quantizing it.

◦ Computes approximate projection of the columns of A onto this quantized basis.
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• We obtain a factorization, A ≈ LR, where the entries of L and R are quantized with B
and B′ bits per entry respectively.

• (A popular benchmark) Naive quantization: Quantize each entry of A ∈ Rn×d uniformly
with a Bnq – bit quantizer.

• Compression ratio with respect to naive quantization is mnB+mdB′
ndBnq

.

• By tuning sketch-size m we can ensure compression ratio ≤ 1 for Bnq = 1, while letting B
and B′ to take values allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.

• Direct-SVD quant. benchmark: Compute the best rank-k approximation (UΣ)kV
⊤
k by

retaining the top-k singular vectors, and subsequently quantize: A ≈ Q((UΣ)k)Q
′(V⊤

k ).
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Image compression

Original Naive DSVD LPLR (ours) LSVD (ours)

Compressing a brain MRI. B = 4, B′ = 8, Bnq = 1,m = 124, n = 1534 d = 1433

Original Naive DSVD LPLR (ours) LSVD (ours)

Compression of a Jupiter image showing its Great Red Spot and Ganymede’s shadow (NASA/ESA
Hubble Space Telescope). B = 2, B′ = 8, Bnq = 1,m = 110. Orig. image dim.: 1102 × 1102
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Approximate nearest neighbor search

• For a given data matrix A ∈ Rn×d and a query x ∈ Rd, retrieve

i
∗
= argmaxi∈[n](Ax)i ≈ argmaxi∈[n](LRx)i

• Applications: Semantic search over vector databases (music recommendation), In-context
learning for LLMs, etc.
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Compressing weight matrices of LLMs

• LlaMa 7b [Touvron et. al, 2023]: An LLM with several layers (difficult to deploy on GPUs)
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Comparison of LPLR and LPLR-SVD on LlaMa weight matrices with B = B′ = 8 bits, Bnq = 4 bits, ordered by
the original sequence of layers on the “Layer” – axis. We observe consistently better Frobenius norm error using
LPLR and LPLR-SVD, with the exception of specific layers which lend themselves to naive quantization.

Average relative Frobenius norm error on LlaMa weight matrices
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Theoretical analysis

• Approximation error upper bounds on the Frobenius norm ∥LR − A∥2
F.

• Bit requirement: How many bits are required per matrix coordinate to achieve the
corresponding approximation error?

• Computation requirement: No. of floating point multiplications of the rate determining
step. O(ndm) for LPLR vs. O(nd2) for direct-SVD quant.

• Properties of randomized embeddings useful for LPLR factorization:

◦ Subspace approximation: For approximately low-rank matrices A ∈ Rn×d, randomly sketching

the columns, i.e., AS ∈ Rn×m constitutes a basis for range(A) with high probability.

[Halko et. al, 2011; Witten & Candes, 2015; Tropp et. al, 2017, ...]

◦ Democratic equalization: ∥AS∥max ≜ maxi,j |Aij | is “small” with high probability.

[Charikar, 2002; Boufounos & Baraniuk, 2008; Plan & Vershynin, 2014, Lyubarskii & Vershynin,
2006; Studer et. al. 2015, ...]

Details in paper
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Conclusions

1. Randomized-embedding based matrix compression: Low precision and low rank
representations.

2. Computationally efficient: O(ndm), m ≪ min{n, d} for randomized-embedding based
LPLR vs. O(nd2) for direct-SVD based methods.

3. Sketch size m is a tunable knob. Allows flexible compression ratios that achieve parity with
(aggressive) quantization as low as a single bit (using current hardware primitives).

4. Provably better approximation error guarantees (Details in paper).

5. Applications in compressing datasets, neural network weights, approximate nearest
neighbors, etc.
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Thank you!

Reach out for questions or discussions:
rajsaha@stanford.edu

Poster Session:
Tue 12 Dec 10:45 a.m. CST — 12:45 p.m. CST, Great Hall & Hall B1+B2 #1824

https://neurips.cc/virtual/2023/poster/70291

Paper: https://openreview.net/forum?id=rxsCTtkqA9
GitHub: https://github.com/pilancilab/matrix-compressor
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