

V///SP

Soft-unification in Deep Probabilistic Logic

Jaron Maene & Luc De Raedt

Declaratieve Talen en Artificiële Intelligentie

Limitations of logic

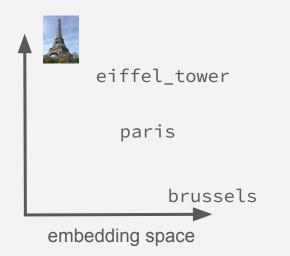
locatedIn(eiffel_tower, paris)

isIn(eiffel_tower, paris)?
locatedIn(, paris)?

××

Soft-unification: symbols \rightarrow embeddings

locatedIn(eiffel_tower, paris) =? locatedIn(, brussels)



Generalizes knowledge graph embeddings: we retain the full power of first-order logical reasoning.

Contributions in short

 We give sound probabilistic semantics to learnable soft-unification.
 We show the equivalence of soft-unification with existing (neuro-)symbolic frameworks based on (neural) probabilistic facts.

How it works: learning embeddings inside of logic

Query:

Program:

Semantics

Neural Theorem Prover: soft-unification with fuzzy semantics

$$(0.9 \land 0.5) \lor (0.6) \lor (0.9)$$

= max(min(0.9, 0.5), 0.6, 0.9) = 0.9 (Gödelt-norm

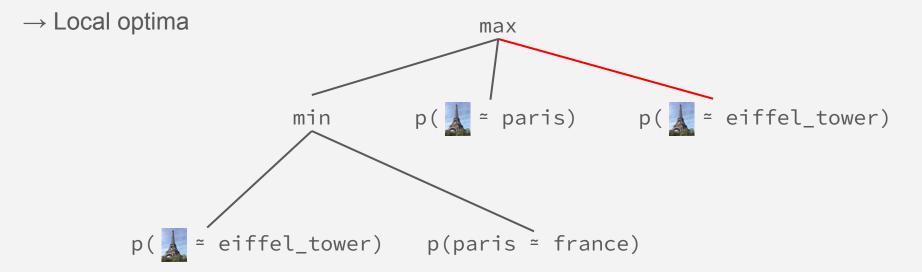
=> end-to-end differentiable!

Rocktäschel, Tim, and Sebastian Riedel. "End-to-end differentiable proving." *Advances in neural information processing systems* 30 (2017).

Problems with fuzzy semantics

Sparse gradients

 \rightarrow Inefficient training



de Jong, Michiel and Fei Sha. "Neural Theorem Provers Do Not Learn Rules Without Exploration." ArXiv abs/1906.06805 (2019).

Problems with fuzzy semantics

Well-defined succes scores

 \rightarrow Equivalent logic should give equivalent results

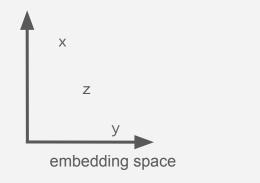
 \rightarrow Impossible for non-sparse fuzzy semantics

 $a = ? a \land a$ ($a \land b$) V ($a \land c$) = ? $a \land (b \land c)$

Problems with fuzzy semantics

Connected embedding space

 \rightarrow Between two embedded symbols x and y there exists a z.

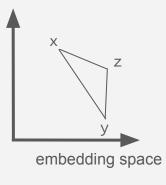


Theorem: In Gödel t-norm semantics, these properties are mutually exclusive.

No redundant soft-unifications

 \rightarrow You can't increase a proof score by inserting soft-unifications.

 $p(x \approx y) \geq p((x \approx z) \land (z \approx y))$



Contribution (1) probabilistic semantics satisfy properties

Theorem: If we interpret the soft-unification as a probability, we and take a soft-unification function of the form $e^{-d(x,y)}$ with d a distance, we get:

- (1) Well-defined proof scores
- (2) No redundancy in proofs
- (3) Connected embedding space
- (4) Non-sparse gradients

Contribution (2) soft-unification \leftrightarrow (neural) probabilistic facts

```
locatedIn(eiffel_tower, paris)
locatedIn(paris, france)
locatedIn(X, Y) ← locatedIn(X, Z) ∧ locatedIn(X, Y)
```

```
source transformation
```

```
+ non-linear rules+ grounding of soft-unification(cf. paper)
```

```
locatedIn(X, Y) \leftarrow (X ~ eiffel_tower) \land (Y ~ paris)
locatedIn(X, Y) \leftarrow (X ~ paris) \land (Y ~ france)
locatedIn(X, Y) \leftarrow locatedIn(X, Z) \land locatedIn(X, Y)
```

Manhaeve, Robin et al. "DeepProbLog: Neural Probabilistic Logic Programming." *Advances in neural information processing systems* 31 (2018).

DeepSoftLog = ProbLog + soft-unification + neural networks

Extend ProbLog with embedded terms: ~paris, ~vision_model(🔬), ...

- Embedding is optional
- Embedded functors are neural networks
- Predicates cannot be embedded (but easy to simulate)
- Semantics based on ProbLog

Experiment: knowledge graphs

t(~neighbourOf, ~france, ~germany).
t(~locatedIn, ~germany, ~western_europe).
t(~locatedIn, ~western_europe, ~europe).

Countries	S1	S2	S3
NTP [29]	90.93 ± 15.4	87.40 ± 11.7	56.68 ± 17.6
GNTP [26]	99.98 ± 0.05	90.82 ± 0.88	87.70 ± 4.79
DeepSoftLog (Ours)	100.0 ± 0.00	97.67 ± 0.98	97.90 ± 1.00
NeuralLP [34]	$\begin{array}{c} \textbf{100.0} \pm 0.0 \\ \textbf{100.0} \pm 0.00 \\ \textbf{100.0} \pm 0.00 \end{array}$	75.1 ± 0.3	92.2 ± 0.2
CTP [27]		91.81 ± 1.07	94.78 ± 0.0
MINERVA [8]		92.36 ± 2.41	95.10 ± 1.2

Experiment: differentiable finite state machines

Jointly learn perception network finite state machine transitions

Language	(01)*	0*10*	(0 10*10*)*
RNN	77.63 ± 15.05	61.59 ± 10.09	$50.14 \pm 1.36 \\ \textbf{56.12} \pm 15.98$
DeepSoftLog	83.93 ± 25.87	87.01 \pm 7.18	

Results: DeepSoftLog is more interpretable and generalizes better, compared to a purely neural baseline.

Thank you!

Paper: <u>https://openreview.net/forum?id=s86M8naPSv</u> Code: <u>https://github.com/jjcmoon/DeepSoftLog</u> Twitter: <u>@jjcmoon</u> & <u>@lucderaedt</u>