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Why is Causality Important?

Policy / drug evaluation

Image Classification

Law, blame

• Natural language processing
• Algorithmic recourse
• transfer learning
• Out of distribution

generalisation
• Many more...
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Probability Theory
Probability Space

(Ω,H,P)
Set of outcomes σ-algebra of events Probability measure

Foundations of the Theory of Probability, Andrei N Kolmogorov, 1933.
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Probability vs Statistics

Data
Generating

Process
Data

Probability Theory

Statistics

Figure: Statistics is an inverse problem of probability theory.

Causal Data
Generating

Process
Data

Causal Reasoning

Causal Discovery

Figure: Causal discovery is an inverse problem of causal reasoning.
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Manipulation is at the heart of Causality

We are interested in what happens to a system, when we intervene on a
sub-system.

Towards Causal Representation Learning, Schölkopf, Locatello, Bauer, Ke, Kalchbrenner,
Goyal, Bengio, Proceedings of the IEEE, 2021.
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Notations

• For a set T , we denote its power set by P(T ).

• Product measurable space with index set T :

(Ω,H) = (×t∈T Et ,⊗t∈TEt).

HS : sub-σ-algebra of H corresponding to
S ∈ P(T ).
Intuition: H = HT is the entire space. HS is a
subspace.

• “Transition probability kernel”
KS from (Ω,HS) into (Ω,H):

KS(x , ·) → [0,1].

For every x ∈ (Ω,HS), KS(x , ·) is a measure on
(Ω,H).
Intuition: conditional distribution.

(Ω,H = HT )

(Ω,HS)

KS

(Ω,H = HT )

(Ω,HS′)

KS′
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Causal Spaces

A causal space is defined as the quadruple (Ω,H,P,K), where
• (Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P) is a probability space, and
• K = {KS : S ∈ P(T )} is a collection of transition probability kernels KS

from (Ω,HS) into (Ω,H), called the causal kernel onHS , such that
(i) for all A ∈ H and x ∈ Ω,

K∅(x ,A) = P(A);
(ii) for all A ∈ HS and x ∈ Ω,

KS(x ,A) = 1A(x).

P is the “observational distribution”.
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Interventions
An intervention is the process of

(a) choosing a sub-σ-algebra HU , and
(b) placing any measure Q on (Ω,HU).

Then we have a new causal space (Ω,H,Pdo(U,Q),Kdo(U,Q)), where

Pdo(U,Q)(A) =
∫

Q(dω)KU(ω,A) (1)

and Kdo(U,Q) = {K do(U,Q)
S : S ∈ P(T )} with

K do(U,Q)
S (ω,A) =

∫
Q(dω′

U\S)KS∪U((ωS, ω
′
U\S),A). (2)

(Ω,H,P,K)

(Ω,HU ,P)

(Ω,H, ?, ?)

(Ω,HU ,Q)
KU

(Ω,H,Pdo(U,Q),Kdo(U,Q))

(Ω,HU ,Q)
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Ice Cream Sales and Fatal Rip Current Accidents

• Causal space: (Eice × Eacc,Eice ⊗ Eacc,P,K)1.

• P has strong correlation.
• For causal kernels, let

• Kice(x ,A) = P(A) for all A ∈ Eacc; and
• Kacc(y ,B) = P(B) for all B ∈ Eice.

1Eice = Eacc = R and Eice = Eacc is the Lebesgue σ-algebra.
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Crop Yield and Price

• Causal space: (Erice × Eprice,Erice ⊗ Eprice,P,K)2.

• Without any intervention, the higher the yield, the more rice there is
in the market, and lower the price.

2Erice = Eprice = R and Erice = Eprice is the Lebesgue σ-algebra.
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Crop Yield and Price

• If the government intervenes by buying up extra rice or releasing rice
into the market from its stock, with the goal of stabilising supply at 3
million tonnes, then the price will stabilise accordingly.

• The corresponding causal kernel at rice = 3 for A ∈ Eprice:

Krice(3,A) =
∫

A

1√
2π

e− 1
2 (x−4.5)2

dx .
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Crop Yield and Price

• If, instead, the government fixes the price of rice at a high price, say 6
thousand Korean Won per kg, then the farmers will be incentivised to
produce more.

• The corresponding causal kernel at price = 6 for B ∈ Erice:

Kprice(6,B) =

∫
B

1√
2π

e− 1
2 (x−4)2

dx .
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Crop Yield and Price

Rice Price

Urice Uprice

Rice = frice(Price,Urice), Price = fprice(Rice,Uprice)

There may not be an observational distribution that is consistent with the
structural equations, or there might be many of them.
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1-dimensional Brownian Motion

• Causal space: (×t∈R+Et ,⊗t∈R+Et ,P,K)3.

• P is the Wiener measure.
• For any s < t , the causal kernels are

Ks(x , y) =
1√

2π(t − s)
e− 1

2(t−s) (y−x)2

, Kt(x , y) =
1√
2πs

e− 1
2s y2

.

Past values affect the future, but future values do not affect the past.

3For each t ∈ R+, Et = R and Et is the Lebesgue σ-algebra.
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Summary

Causal Data
Generating

Process
Data

Causal Reasoning

Causal Discovery

Figure: Causal discovery is an inverse problem of
causality reasoning.

• We focused on the forwards direction, and proposed causal spaces by
endowing probability spaces with causal kernels.

• Causal spaces strictly generalise existing frameworks, while elegantly
overcoming some of their drawbacks, such as hidden confounders,
cycles and continuous time stochastic processes.

• In the backwards direction, assumptions are unavoidable. The value
of a framework is how well and naturally the assumptions can be
expressed. For that, existing frameworks excel.
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