# Understanding and Addressing the Pitfalls of Bisimulation-based Representations in Offline Reinforcement Learning

Hongyu Zang<sup>1</sup>, Xin Li<sup>1</sup>, Leiji Zhang<sup>1</sup>, Yang Liu<sup>2</sup>, Baigui Sun<sup>2</sup>, Riashat Islam<sup>3</sup>, Remi Tachet des Combes<sup>4</sup>, Romain Laroche

> <sup>1</sup>Beijing Institute of Technology, China <sup>2</sup>Alibaba Group, China <sup>3</sup>Mila, McGill University, Canada <sup>4</sup>Wayve, UK

## **Bisimulation**



Bisimilar states and bisimilar labeled transition systems



### Theorem 1 (Castro 2019):

• • •

Define  $\mathcal{F}^{\pi} : \mathcal{M} \to \mathcal{M}$  by  $\mathcal{F}^{\pi}(d)(s, t) = |\mathcal{R}_{s}^{\pi} - \mathcal{R}_{t}^{\pi}| + \gamma \mathcal{W}_{1}(d) (\mathcal{P}_{s}^{\pi}, \mathcal{P}_{t}^{\pi})$ , then  $\mathcal{F}^{\pi}$  has a least fixed point  $d_{\sim}^{\pi}$ , and  $d_{\sim}^{\pi}$  is a  $\pi$ -bisimulation metric.

DBC [Zhang et al. 2021]

MICo [Castro et al. 2021]

SimSR [Zang et al. 2022]

Perform pretty well in Online settings!

(Image source: Zhang et al. 2021)

## **Bisimulation in Offline RL**



#### Motivations

- While bisimulation-based approaches hold promise for learning robust state representations for Reinforcement Learning (RL) tasks, their efficacy in offline RL tasks has not been up to par.
- Recent studies suggest that bisimulation-based algorithms yield significantly poorer results on Offline tasks compared to a variety of (self-)supervised objectives.

#### Contributions

- We investigate the pitfalls of directly applying the bisimulation principle in Offline settings.
- We propose theoretically motivated modifications, including an expectile-based operator and a tailored reward scaling strategy.
- We demonstrate superior performance through empirical studies on D4RL and Visual D4RL

### Formal Usage of Bisimulation

Goal: Approximate the fixed point of bisimulation measurement

*bisimulation error*  $\Delta_{\phi}^{\pi}$ :  $\Delta_{\phi}^{\pi}(s_i,s_j) := |G_{\phi}^{\pi}(s_i,s_j) - G_{\sim}^{\pi}(s_i,s_j)|$ 

minimizing the distance between the approximation  $\,G_\phi^\pi\,$  and the fixed point  $\,G_\sim^\pi\,$ 

× **Obstacle**: the fixed point  $G^{\pi}_{\sim}$  is unobtainable.

**Lemma** (Lifted MDP): The bisimulation-based update operator for an MDP is the Bellman evaluation operator for a specific lifted MDP.

#### ✓ Solution:

Define *bisimulation Bellman residual*  $\epsilon_{\phi}^{\pi}$  as:

 $\epsilon_{\phi}^{\pi}(s_i,s_j)\!:=\!|G_{\phi}^{\pi}(s_i,s_j)\!-\!\mathcal{F}^{\pi}G_{\phi}^{\pi}(s_i,s_j)|,$ 

and given the connection between the bisimulation operator and MDP, we can minimize bisimulation Bellman residual instead.

### Formal Usage of Bisimulation

*bisimulation error*  $\Delta_{\phi}^{\pi}$ :  $\Delta_{\phi}^{\pi}(s_i,s_j)$ : =  $|G_{\phi}^{\pi}(s_i,s_j) - G_{\sim}^{\pi}(s_i,s_j)|$ 

bisimulation Bellman residual  $\epsilon_{\phi}^{\pi}$ :  $\epsilon_{\phi}^{\pi}(s_i,s_j)$ : =  $|G_{\phi}^{\pi}(s_i,s_j) - \mathcal{F}^{\pi}G_{\phi}^{\pi}(s_i,s_j)|$ ,

**Theorem 3.** (*Bisimulation error upper-bound*). Let  $\mu_{\pi}(s)$  denote the stationary distribution over states, let  $\mu_{\pi}(\cdot, \cdot)$  denote the joint distribution over synchronized pairs of states  $(s_i, s_j)$  sampled independently from  $\mu_{\pi}(\cdot)$ . For any state pair  $(s_i, s_j) \in S \times S$ , the bisimulation error  $\Delta_{\phi}^{\pi}(s_i, s_j)$  can be upper-bounded by a sum of expected bisimulation Bellman residuals  $\epsilon_{\phi}^{\pi}$ :

$$\Delta_{\phi}^{\pi}(s_i, s_j) \leq \frac{1}{1 - \gamma} \mathbb{E}_{(s'_i, s'_j) \sim \mu_{\pi}} \left[ \epsilon_{\phi}^{\pi}(s'_i, s'_j) \right].$$

$$\tag{5}$$

**Proposition 4.** (The expected bisimulation residual is not sufficient over incomplete datasets). If there exists states  $s'_i$  and  $s'_j$  not contained in dataset  $\mathcal{D}$ , where the occupancy  $\mu_{\pi}(s'_i|s_i, a_i) > 0$  and  $\mu_{\pi}(s'_j|s_j, a_j) > 0$  for some  $(s_i, s_j) \sim \mu_{\pi}$ , then there exists a bisimulation measurement  $G^{\pi}_{\phi}$  and a constant C > 0 such that

- For all  $(\hat{s}_i, \hat{s}_j) \in \mathcal{D}$ , the bisimulation Bellman residual  $\epsilon_{\phi}^{\pi}(\hat{s}_i, \hat{s}_j) = 0$ .
- There exists  $(s_i, s_j) \in \mathcal{D}$ , such that the bisimulation error  $\Delta_{\phi}^{\pi}(s_i, s_j) = C$ .

## **Modifications of Bisimulation in Offline RL**

#### **Two improvements:**

• Expectile-based Bisimulation Operator



au is used to balance a trade-off between behavior and optimal

#### Two improvements:

• Reward Scaling

Given a more general form of the bisimulation operator:

$$\mathcal{F}^{\pi}G(s_{i},s_{j}) \!=\! c_{ au} \cdot |r_{s_{i}}^{\pi} - r_{s_{j}}^{\pi}| \!+\! c_{k} \cdot \mathbb{E}_{s_{i}',s_{j}'}^{\pi}[G(s_{i}',s_{j}')]$$

We can derive

$$egin{aligned} G^{\pi}_{\sim}(s_i,s_j) &= \mathcal{F}^{\pi}G^{\pi}_{\sim}(s_i,s_j) = c_r \cdot |r^{\pi}_{s_i} - r^{\pi}_{s_j}| + c_k \cdot \mathbb{E}^{\pi}_{s_i',s_j'}[G^{\pi}_{\sim}(s_i',s_j')] \ &\leq c_r \cdot (R_{ ext{max}} - R_{ ext{min}}) + c_k \cdot \mathbb{E}^{\pi}_{s_i',s_j'}[G^{\pi}_{\sim}(s_i',s_j')] \ &\leq c_r \cdot (R_{ ext{max}} - R_{ ext{min}}) + c_k \cdot \max_{s_i',s_j'}G^{\pi}_{\sim}(s_i',s_j'). \end{aligned}$$

And

**Theorem 8.** (Value bound based on on-policy bisimulation measurements in terms of approximation error). Given an MDP  $\widetilde{\mathcal{M}}$  constructed by aggregating states in an  $\omega$ -neighborhood, and an encoder  $\phi$  that maps from states in the original MDP  $\mathcal{M}$  to these clusters, the value functions for the two MDPs are bounded as

$$\left|V^{\pi}\left(s\right) - \widetilde{V}^{\pi}\left(\phi\left(s\right)\right)\right| \leq \frac{2\omega + \hat{\Delta}}{c_{r}(1-\gamma)}.$$
(11)

where  $\hat{\Delta} := \|\hat{G}^{\pi}_{\sim} - \hat{G}^{\pi}_{\phi}\|_{\infty}$  is the approximation error.

### **Experiments**







Figure 3: Bootstrapping distributions for uncertainty in IQM (*i.e.* inter-quartile mean) measurement on D4RL tasks (left) and visual D4RL tasks (right), following from the performance criterion in [2].

| Dataset                   | CURL | DRIMLC | HOMER | ICM  | $MICo \rightarrow MICo + EBS$            | $SimSR \rightarrow SimSR+RS+EBS$     |
|---------------------------|------|--------|-------|------|------------------------------------------|--------------------------------------|
| cheetah-run-medium        | 392  | 524    | 475   | 365  | $177 \rightarrow 449 (\nearrow 272)$     | $391 \rightarrow 491 (\nearrow 100)$ |
| walker-walk-medium        | 452  | 425    | 439   | 358  | $450 \rightarrow 447 ()$                 | $443 \rightarrow 480(\nearrow 37)$   |
| cheetah-run-medium-replay | 271  | 395    | 306   | 251  | 335 →357 ( 22)                           | $374 \rightarrow 462 (\nearrow 88)$  |
| walker-walk-medium-replay | 265  | 235    | 283   | 167  | $207 \rightarrow 240 (\nearrow 33)$      | $197 \rightarrow 240(\nearrow 43)$   |
| cheetah-run-medium-expert | 348  | 403    | 383   | 280  | $282 \rightarrow 341 (\nearrow 59)$      | $360 \rightarrow 547 (\nearrow 187)$ |
| walker-walk-medium-expert | 729  | 399    | 781   | 606  | $586 \rightarrow 635(\nearrow 49)$       | $755 \rightarrow 845(\nearrow 90)$   |
| cheetah-run-expert        | 200  | 310    | 218   | 237  | $308 \rightarrow 331 (\nearrow 23)$      | $409 \rightarrow 454(745)$           |
| walker-walk-expert        | 769  | 427    | 686   | 850  | $370 \rightarrow 447 (\nearrow 77)$      | 578 → 580 (—)                        |
| total                     | 3426 | 3118   | 3571  | 3114 | $2715 \rightarrow 3253 \ (\nearrow 538)$ | 3507 → <b>4043</b> ( <i>7</i> 536)   |

Table 1: Performance comparison with several other baselines on V-D4RL benchmark, averaged on 3 random seeds.

# Check our paper for ...

- Detailed description of our proposed method
- Theoretical guarantees
- More empirical results





paper

code