
A Neural Collapse Perspective on Feature
Evolution in Graph Neural Networks

Vignesh Kothapalli1,3, Tom Tirer2, Joan Bruna1

1. New York University
2. Bar-Ilan University

3. LinkedIn Engineering

NeurIPS 2023

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 1 / 34

https://arxiv.org/abs/2307.01951

Outline

1 Neural Collapse in Deep Neural Networks

2 Neural Collapse in Graph Neural Networks

3 Depth-wise GNN behavior during Inference

4 Summary

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 2 / 34

https://arxiv.org/abs/2307.01951

Background: Neural Collapse

Supervised training of DNNs for classification tasks can be
formulated as an Empirical Risk Minimization (ERM) problem:

R̂(Θ) = min
Θ

1

N

N∑
i=1

L(ψΘ(Xi),Yi). (1)

Here:

▶ Xi ∈ Rd0×N ,Yi ∈ RC×N represent the input and label
matrices.

▶ ψΘ : Rd0 → RC is an overparameterized feed-forward DNN.

▶ L : RC × RC → R is the loss function (cross-entropy, MSE)

Training beyond zero-classification error, towards zero R̂(Θ) (a.k.a
Terminal Phase of Training (TPT)) leads to the “Neural Collapse”
phenomenon!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 3 / 34

https://arxiv.org/abs/2307.01951

Background: Neural Collapse

Supervised training of DNNs for classification tasks can be
formulated as an Empirical Risk Minimization (ERM) problem:

R̂(Θ) = min
Θ

1

N

N∑
i=1

L(ψΘ(Xi),Yi). (1)

Here:

▶ Xi ∈ Rd0×N ,Yi ∈ RC×N represent the input and label
matrices.

▶ ψΘ : Rd0 → RC is an overparameterized feed-forward DNN.

▶ L : RC × RC → R is the loss function (cross-entropy, MSE)

Training beyond zero-classification error, towards zero R̂(Θ) (a.k.a
Terminal Phase of Training (TPT)) leads to the “Neural Collapse”
phenomenon!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 3 / 34

https://arxiv.org/abs/2307.01951

Visualizing Neural Collapse

NC is characterized by four properties (NC1-4) pertaining to the
penultimate layer features and the final layer classifier.

(a) (b)

Figure 1: Penultimate layer features and final layer classifier: VGG13 + 3 classes from CIFAR10 [Papyan et.al 2020]

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 4 / 34

https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://arxiv.org/abs/2307.01951

Feature means and covariances

For all “balanced” classes c ∈ [C] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG)(µc − µG)

⊤)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 5 / 34

https://arxiv.org/abs/2307.01951

Feature means and covariances

For all “balanced” classes c ∈ [C] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG)(µc − µG)

⊤)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 5 / 34

https://arxiv.org/abs/2307.01951

Feature means and covariances

For all “balanced” classes c ∈ [C] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG)(µc − µG)

⊤)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 5 / 34

https://arxiv.org/abs/2307.01951

Feature means and covariances

For all “balanced” classes c ∈ [C] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG)(µc − µG)

⊤)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 5 / 34

https://arxiv.org/abs/2307.01951

Feature means and covariances

For all “balanced” classes c ∈ [C] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG)(µc − µG)

⊤)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 5 / 34

https://arxiv.org/abs/2307.01951

Properties of Neural Collapse: NC1

NC1: Collapse of Variability: For all classes c ∈ [C] and data
points i ∈ [n] within a class, the penultimate layer features
hc,i ∈ RdL−1 collapse to their class means µc = 1

n

∑n
i=1 hc,i .

NC1 :=
1

C
tr{ΣWΣ†

B} → 0 (2)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 6 / 34

https://arxiv.org/abs/2307.01951

Properties of Neural Collapse: NC2

NC2: Preference towards a simplex ETF: The re-centered class
means µc − µG ,∀c ∈ [C] are equidistant and equiangular from
each other. Formally, matrix M ∈ RC×dL−1 with columns
µc−µG

∥µc−µG∥2
∈ RdL−1 ,∀c ∈ [C] represents a simplex ETF.

NC2 :=

∥∥∥∥ MM⊤

∥MM⊤∥F
− 1√

C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥
F

→ 0 (3)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 7 / 34

https://arxiv.org/abs/2307.01951

Properties of Neural Collapse: NC3

NC3: Self-dual alignment: The last-layer classifier W ∈ RC×dL−1 is
in alignment with the simplex ETF of M (up to rescaling) as:

W

∥W∥F
=

M

∥M∥F

NC3 :=

∥∥∥∥ WM⊤

∥WM⊤∥F
− 1√

C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥
F

→ 0 (4)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 8 / 34

https://arxiv.org/abs/2307.01951

Properties of Neural Collapse: NC4

NC4: Choose the nearest class mean: for any new test point xtest ,
the classification result is determined by: argminc∈[C] ∥htest − µc∥2.
During training, one can track this property on X as a sanity check.

NC4 :=
1

Cn

C∑
c=1

n∑
i=1

I(argmaxc′∈[C](⟨wc′ , hc,i ⟩+bc′) ̸= argminc′∈[C] ∥hc,i − µc′∥2) → 0.

(5)
Here I(.) is the indicator function and bc ∈ R is the c th element of bias vector.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 9 / 34

https://arxiv.org/abs/2307.01951

Experimental results

Figure 2: NC1-4: ResNet18 + CIFAR10 [Zhu et.al 2021]

Figure 3: NC1 for VGG, ResNet, DenseNet on various datasets [Papyan et.al 2020]

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 10 / 34

https://arxiv.org/pdf/2105.02375.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 11 / 34

https://arxiv.org/abs/2307.01951

NC theory: Unconstrained Features Model for DNNs

▶ Under the assumption that the DNN is expressive enough to
reach TPT, the “Unconstrained Features Model (UFM)” peels
away the first ‘L-1’ hidden layers.

▶ The penultimate layer features are treated as freely optimizable!

▶ An idealistic model to explain neural collapse.

Figure 4: Unconstrained Features Model for CNN (left) and MLP (right) [Kothapalli 2023]

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 12 / 34

https://arxiv.org/pdf/2206.04041.pdf
https://arxiv.org/abs/2307.01951

Theoretical Formulation of UFM

Consider the ERM with MSE loss and regularization as follows:

R̂(W,H) :=
1

2N
∥WH− Y∥2F +

λH
2

∥H∥2F +
λW
2

∥W∥2F (6)

This setup has been studied extensively by previous works (see
references in paper) and has been shown that any minimizer
(W∗,H∗) exhibits neural collapse.

a

b
c

d

e

f

DNN : UFM NC

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 13 / 34

https://arxiv.org/abs/2307.01951
https://arxiv.org/abs/2307.01951

Connectivity between data points and GNNs

What if structural connectivity exists between data points?

▶ How can we modify the UFM in graph settings?

▶ Do GNNs exhibit NC?

a

b
c

d

e

f

GNN : ? ?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 14 / 34

https://arxiv.org/abs/2307.01951

Community detection on SSBM graphs

▶ We consider the task of detecting communities/clusters in
sparse Symmetric Stochastic Block Model (SSBM) graphs.

▶ SSBM graphs are random graphs where nodes belonging to the
same cluster are connected with a probability p and nodes
belonging to different clusters are connected with probability q.

▶ We sample K random SSBM graphs {Gk = (Vk , Ek)}Kk=1, each

with N nodes, C clusters, p = a logN
N , q = b logN

N (regime of
exact recovery).

p

p

q

p
q

pa

b
c

d

e

f

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 15 / 34

https://arxiv.org/abs/2307.01951

Community detection on SSBM graphs

▶ We consider the task of detecting communities/clusters in
sparse Symmetric Stochastic Block Model (SSBM) graphs.

▶ SSBM graphs are random graphs where nodes belonging to the
same cluster are connected with a probability p and nodes
belonging to different clusters are connected with probability q.

▶ We sample K random SSBM graphs {Gk = (Vk , Ek)}Kk=1, each

with N nodes, C clusters, p = a logN
N , q = b logN

N (regime of
exact recovery).

p

p

q

p
q

pa

b
c

d

e

f

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 15 / 34

https://arxiv.org/abs/2307.01951

Community detection on SSBM graphs

▶ We consider the task of detecting communities/clusters in
sparse Symmetric Stochastic Block Model (SSBM) graphs.

▶ SSBM graphs are random graphs where nodes belonging to the
same cluster are connected with a probability p and nodes
belonging to different clusters are connected with probability q.

▶ We sample K random SSBM graphs {Gk = (Vk , Ek)}Kk=1, each

with N nodes, C clusters, p = a logN
N , q = b logN

N (regime of
exact recovery).

p

p

q

p
q

pa

b
c

d

e

f

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 15 / 34

https://arxiv.org/abs/2307.01951

Supervised community detection with GNNs

▶ For a GNN ψΘ, the ERM for supervised community detection
can be given as:

R̂ = min
Θ

1

K

K∑
k=1

L(ψΘ(Gk), yk) +
λ

2
∥Θ∥2F , (7)

where L is based on MSE:

L(ψΘ(Gk), yk) = min
π∈SC

1

2N
∥ψΘ (Gk)− π (yk (Vk))∥22 . (8)

▶ The performance is measured using “overlap”:

overlap(ŷ , y) := max
π∈SC

(
1

N

N∑
i=1

δŷ(vi),π(y(vi)) −
1

C

)
/

(
1− 1

C

)
(9)

Here π indicates permutations over the labels (communities).

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 16 / 34

https://arxiv.org/abs/2307.01951

Supervised community detection with GNNs

▶ For a GNN ψΘ, the ERM for supervised community detection
can be given as:

R̂ = min
Θ

1

K

K∑
k=1

L(ψΘ(Gk), yk) +
λ

2
∥Θ∥2F , (7)

where L is based on MSE:

L(ψΘ(Gk), yk) = min
π∈SC

1

2N
∥ψΘ (Gk)− π (yk (Vk))∥22 . (8)

▶ The performance is measured using “overlap”:

overlap(ŷ , y) := max
π∈SC

(
1

N

N∑
i=1

δŷ(vi),π(y(vi)) −
1

C

)
/

(
1− 1

C

)
(9)

Here π indicates permutations over the labels (communities).

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 16 / 34

https://arxiv.org/abs/2307.01951

Supervised community detection with GNNs

▶ For a GNN ψΘ, the ERM for supervised community detection
can be given as:

R̂ = min
Θ

1

K

K∑
k=1

L(ψΘ(Gk), yk) +
λ

2
∥Θ∥2F , (7)

where L is based on MSE:

L(ψΘ(Gk), yk) = min
π∈SC

1

2N
∥ψΘ (Gk)− π (yk (Vk))∥22 . (8)

▶ The performance is measured using “overlap”:

overlap(ŷ , y) := max
π∈SC

(
1

N

N∑
i=1

δŷ(vi),π(y(vi)) −
1

C

)
/

(
1− 1

C

)
(9)

Here π indicates permutations over the labels (communities).

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 16 / 34

https://arxiv.org/abs/2307.01951

GNN formulations

▶ For a GNN ψF
Θ with L layers, the node features H

(l)
k ∈ Rdl×N

at layer l ∈ [L] is given by:

X
(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k),

(10)

where H
(0)
k = Xk , and σ(·) represents a point-wise activation

function such as ReLU. W
(l)
1 ,W

(l)
2 ∈ Rdl×dl−1 are the weight

matrices and Âk = AkD
−1
k is the normalized adjacency matrix,

also known as the random-walk matrix.

▶ A simpler variant ψF ′
Θ is given by:

X
(l)
k = W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k).

(11)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 17 / 34

https://arxiv.org/abs/2307.01951

GNN formulations

▶ For a GNN ψF
Θ with L layers, the node features H

(l)
k ∈ Rdl×N

at layer l ∈ [L] is given by:

X
(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k),

(10)

where H
(0)
k = Xk , and σ(·) represents a point-wise activation

function such as ReLU. W
(l)
1 ,W

(l)
2 ∈ Rdl×dl−1 are the weight

matrices and Âk = AkD
−1
k is the normalized adjacency matrix,

also known as the random-walk matrix.

▶ A simpler variant ψF ′
Θ is given by:

X
(l)
k = W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k).

(11)

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 17 / 34

https://arxiv.org/abs/2307.01951

Experimental results: GNN

Figure 5: GNN ψF
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

Figure 6: GNN ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

The extent of reduction in NC1 is ‘less’ when compared to the DNN case!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 18 / 34

https://arxiv.org/abs/2307.01951

Structural condition for collapsed minimizers

By treating {H(L−1)
k }Kk=1 as freely optimizable variables, the

empirical risk based on the gUFM can be formulated as follows:

R̂F′
(W2, {Hk}Kk=1) :=

1

K

K∑
k=1

(
1

2N

∥∥∥W2Hk Âk − Y
∥∥∥2
F
+
λHk

2
∥Hk∥2F

)
+
λW2

2
∥W2∥2F

(12)

Theorem 3.1

Consider the gUFM with K = 1 and denote the fraction of neighbors of node

vc,i that belong to class c ′ as scc′,i =
|Nc′ (vc,i)|
|N (vc,i)|

. Let the condition C based on

scc′,i be given by:

(sc1,1, · · · , scC ,1) = · · · = (sc1,n, · · · , scC ,n), ∀c ∈ [C]. (C)

If a graph G satisfies condition C, then there exist minimizers of the gUFM that
are collapsed (w.r.t NC1). Conversely, when either

√
λHλW2 = 0, or√

λHλW2 > 0 and G is regular (so that Â = Â⊤), if there exists a collapsed
non-degenerate minimizer of gUFM, then condition C necessarily holds.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 19 / 34

https://arxiv.org/abs/2307.01951

Structural condition for collapsed minimizers

By treating {H(L−1)
k }Kk=1 as freely optimizable variables, the

empirical risk based on the gUFM can be formulated as follows:

R̂F′
(W2, {Hk}Kk=1) :=

1

K

K∑
k=1

(
1

2N

∥∥∥W2Hk Âk − Y
∥∥∥2
F
+
λHk

2
∥Hk∥2F

)
+
λW2

2
∥W2∥2F

(12)

Theorem 3.1

Consider the gUFM with K = 1 and denote the fraction of neighbors of node

vc,i that belong to class c ′ as scc′,i =
|Nc′ (vc,i)|
|N (vc,i)|

. Let the condition C based on

scc′,i be given by:

(sc1,1, · · · , scC ,1) = · · · = (sc1,n, · · · , scC ,n), ∀c ∈ [C]. (C)

If a graph G satisfies condition C, then there exist minimizers of the gUFM that
are collapsed (w.r.t NC1). Conversely, when either

√
λHλW2 = 0, or√

λHλW2 > 0 and G is regular (so that Â = Â⊤), if there exists a collapsed
non-degenerate minimizer of gUFM, then condition C necessarily holds.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 19 / 34

https://arxiv.org/abs/2307.01951

cond (C): graph view

▶ Homophilic neighborhoods (p > q) satisfying cond (C).

▶ Heterophilic neighborhoods (q > p) satisfying cond (C).

▶ Note that the Â = Â⊤ condition is only an artifact of the proof
and not a blocker for empirical analysis.

▶ Previous works (for ex: Ma et.al) have empirically shown good
GNN performance on heterophilic graphs with structure
approximately satisfying cond (C). We provide an
optimization-based theory for such behaviour.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 20 / 34

https://arxiv.org/abs/2106.06134
https://arxiv.org/abs/2307.01951

cond (C): graph view

▶ Homophilic neighborhoods (p > q) satisfying cond (C).

▶ Heterophilic neighborhoods (q > p) satisfying cond (C).

▶ Note that the Â = Â⊤ condition is only an artifact of the proof
and not a blocker for empirical analysis.

▶ Previous works (for ex: Ma et.al) have empirically shown good
GNN performance on heterophilic graphs with structure
approximately satisfying cond (C). We provide an
optimization-based theory for such behaviour.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 20 / 34

https://arxiv.org/abs/2106.06134
https://arxiv.org/abs/2307.01951

cond (C): graph view

▶ Homophilic neighborhoods (p > q) satisfying cond (C).

▶ Heterophilic neighborhoods (q > p) satisfying cond (C).

▶ Note that the Â = Â⊤ condition is only an artifact of the proof
and not a blocker for empirical analysis.

▶ Previous works (for ex: Ma et.al) have empirically shown good
GNN performance on heterophilic graphs with structure
approximately satisfying cond (C). We provide an
optimization-based theory for such behaviour.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 20 / 34

https://arxiv.org/abs/2106.06134
https://arxiv.org/abs/2307.01951

cond (C): graph view

▶ Homophilic neighborhoods (p > q) satisfying cond (C).

▶ Heterophilic neighborhoods (q > p) satisfying cond (C).

▶ Note that the Â = Â⊤ condition is only an artifact of the proof
and not a blocker for empirical analysis.

▶ Previous works (for ex: Ma et.al) have empirically shown good
GNN performance on heterophilic graphs with structure
approximately satisfying cond (C). We provide an
optimization-based theory for such behaviour.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 20 / 34

https://arxiv.org/abs/2106.06134
https://arxiv.org/abs/2307.01951

cond (C): matrix view

▶ Recall that the computation graph is defined by Â = AD−1.

▶ The value

scc ′,i =
|Nc ′(vc,i)|
|N (vc,i)|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.

Â =

· · · · · ·

· · · · · ·

 , =⇒ 1⊤ = s11, 1
⊤ = s12,∀i ∈ [n]

▶ The same applies to all nodes in class c = 2. Straightforward
to extend this to C > 2 settings.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 21 / 34

https://arxiv.org/abs/2307.01951

cond (C): matrix view

▶ Recall that the computation graph is defined by Â = AD−1.

▶ The value

scc ′,i =
|Nc ′(vc,i)|
|N (vc,i)|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.

Â =

· · · · · ·

· · · · · ·

 , =⇒ 1⊤ = s11, 1
⊤ = s12,∀i ∈ [n]

▶ The same applies to all nodes in class c = 2. Straightforward
to extend this to C > 2 settings.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 21 / 34

https://arxiv.org/abs/2307.01951

cond (C): matrix view

▶ Recall that the computation graph is defined by Â = AD−1.

▶ The value

scc ′,i =
|Nc ′(vc,i)|
|N (vc,i)|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.

Â =

· · · · · ·

· · · · · ·

 , =⇒ 1⊤ = s11, 1
⊤ = s12,∀i ∈ [n]

▶ The same applies to all nodes in class c = 2. Straightforward
to extend this to C > 2 settings.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 21 / 34

https://arxiv.org/abs/2307.01951

cond (C): matrix view

▶ Recall that the computation graph is defined by Â = AD−1.

▶ The value

scc ′,i =
|Nc ′(vc,i)|
|N (vc,i)|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.

Â =

· · · · · ·

· · · · · ·

 , =⇒ 1⊤ = s11, 1
⊤ = s12,∀i ∈ [n]

▶ The same applies to all nodes in class c = 2. Straightforward
to extend this to C > 2 settings.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 21 / 34

https://arxiv.org/abs/2307.01951

Minimizer Conjecture

Conjecture 3.1

Consider the gUFM with K = 1 and condition C as stated in
theorem 3.1. The minimizers of the gUFM are collapsed (w.r.t NC1)
iff the graph G satisfies condition C.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 22 / 34

https://arxiv.org/abs/2307.01951

Sampling SSBM graphs satisfying cond (C)

What is the probability of sampling a random SSBM graph that
satisfies cond (C)? A: practically 0

Theorem 3.2

Let G = (V, E) be drawn from SSBM(N,C , p, q). For N >> C , we
have

P (G obeys C) <

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

. (13)

Numerical example. Let’s consider a setting with
C = 2,N = 1000, p = 0.025, q = 0.0017. This gives us
P(G obeys C) < 2.18× 10−188.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 23 / 34

https://arxiv.org/abs/2307.01951

Sampling SSBM graphs satisfying cond (C)

What is the probability of sampling a random SSBM graph that
satisfies cond (C)? A: practically 0

Theorem 3.2

Let G = (V, E) be drawn from SSBM(N,C , p, q). For N >> C , we
have

P (G obeys C) <

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

. (13)

Numerical example. Let’s consider a setting with
C = 2,N = 1000, p = 0.025, q = 0.0017. This gives us
P(G obeys C) < 2.18× 10−188.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 23 / 34

https://arxiv.org/abs/2307.01951

Sampling SSBM graphs satisfying cond (C)

What is the probability of sampling a random SSBM graph that
satisfies cond (C)? A: practically 0

Theorem 3.2

Let G = (V, E) be drawn from SSBM(N,C , p, q). For N >> C , we
have

P (G obeys C) <

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

. (13)

Numerical example. Let’s consider a setting with
C = 2,N = 1000, p = 0.025, q = 0.0017. This gives us
P(G obeys C) < 2.18× 10−188.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 23 / 34

https://arxiv.org/abs/2307.01951

Experimental results: gUFM

Figure 7: gUFM for ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on 10 SSBM graphs

which do not satisfy condition C.

Figure 8: gUFM for ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on 10 SSBM graphs

which satisfies condition C.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 24 / 34

https://arxiv.org/abs/2307.01951

Gradient-Flow of unconstrained features

To understand this “partial collapse” behaviour, we analyze the
gradient flow along the “central path” — i.e., when W2 = W∗

2(H)

is the optimal minimizer of R̂F ′
(W2,H) w.r.t. W2, as follows

dHt

dt
= −∇R̂F ′

(W∗
2(Ht),Ht). (14)

Theorem 3.3

Let K = 1, C = 2 and λW2 > 0. There exist α > 0 and E > 0,
such that for 0 < λH < α and 0 < ∥E∥ < E , along the gradient
flow stated in (14) associated with the graph Â = EÂ+ E, we have
that: (1) Tr(ΣW (Ht)) decreases, and (2) Tr(ΣB(Ht)) increases.

Accordingly, Ñ C1(Ht) decreases.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 25 / 34

https://arxiv.org/abs/2307.01951

Gradient-Flow of unconstrained features

To understand this “partial collapse” behaviour, we analyze the
gradient flow along the “central path” — i.e., when W2 = W∗

2(H)

is the optimal minimizer of R̂F ′
(W2,H) w.r.t. W2, as follows

dHt

dt
= −∇R̂F ′

(W∗
2(Ht),Ht). (14)

Theorem 3.3

Let K = 1, C = 2 and λW2 > 0. There exist α > 0 and E > 0,
such that for 0 < λH < α and 0 < ∥E∥ < E , along the gradient
flow stated in (14) associated with the graph Â = EÂ+ E, we have
that: (1) Tr(ΣW (Ht)) decreases, and (2) Tr(ΣB(Ht)) increases.

Accordingly, Ñ C1(Ht) decreases.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 25 / 34

https://arxiv.org/abs/2307.01951

Brief note on Oversmoothing

Oversmoothing

(Rusch et al.): For an undirected, connected graph G = (V, E) with
|V| = N and l-th layer hidden features Hl ∈ Rdl×N , a function
µ : Rdl×N → R≥0 is called a node-similarity measure if:

1 ∃c ∈ Rdl with Hi = c for all nodes i ∈ V ⇐⇒ µ(H) = 0, for
H ∈ Rdl×N

2 µ(H+ T) ≤ µ(H) + µ(T), for all H,T ∈ Rdl×N .

Oversmoothing with respect to µ is now defined as the layer-wise
exponential convergence of the node-similarity measure µ to zero

µ(Hl) ≤ C1e
−C2l , for l = 1, · · · , L with some constants C1,C2 > 0.

▶ Oversmoothing =⇒ ΣW (HL−1),ΣB(H
L−1) → 0.

▶ NC =⇒ ΣW (HL−1) decreases, and ΣB(H
L−1) is bounded

from below!!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 26 / 34

https://arxiv.org/abs/2307.01951

Brief note on Oversmoothing

Oversmoothing

(Rusch et al.): For an undirected, connected graph G = (V, E) with
|V| = N and l-th layer hidden features Hl ∈ Rdl×N , a function
µ : Rdl×N → R≥0 is called a node-similarity measure if:

1 ∃c ∈ Rdl with Hi = c for all nodes i ∈ V ⇐⇒ µ(H) = 0, for
H ∈ Rdl×N

2 µ(H+ T) ≤ µ(H) + µ(T), for all H,T ∈ Rdl×N .

Oversmoothing with respect to µ is now defined as the layer-wise
exponential convergence of the node-similarity measure µ to zero

µ(Hl) ≤ C1e
−C2l , for l = 1, · · · , L with some constants C1,C2 > 0.

▶ Oversmoothing =⇒ ΣW (HL−1),ΣB(H
L−1) → 0.

▶ NC =⇒ ΣW (HL−1) decreases, and ΣB(H
L−1) is bounded

from below!!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 26 / 34

https://arxiv.org/abs/2307.01951

NC during Inference

Till now, we have analyzed the training phase of GNNs. But, what
about inference? What can we say about the NC properties of
features across depth?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 27 / 34

https://arxiv.org/abs/2307.01951

GNN vs Projected Power Iterations

As a baseline during inference, we perform spectral clustering using
projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices to approximate the Fiedler vector.

NL(G) = I−D−1/2AD−1/2, (15)

BH(G, r) = (r2 − 1)I− rA+D, (16)

where r ∈ R is the BH scaling factor. Now, by treating B to be
either NL or BH matrix, a projected power iteration to estimate the
second largest eigenvector of B̃ = ∥B∥ I− B is given by:

x(l) = B̃w(l−1), where w(l−1) =
x(l−1) − ⟨x(l−1), v⟩v∥∥x(l−1) − ⟨x(l−1), v⟩v

∥∥
2

,

(17)

with the vector v ∈ RN denoting the largest eigenvector of B̃. Thus,
we start with a random normal vector w0 ∈ RN and iteratively
compute the feature vector x(l) ∈ RN .

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 28 / 34

https://arxiv.org/abs/2307.01951

GNN vs Projected Power Iterations

As a baseline during inference, we perform spectral clustering using
projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices to approximate the Fiedler vector.

NL(G) = I−D−1/2AD−1/2, (15)

BH(G, r) = (r2 − 1)I− rA+D, (16)

where r ∈ R is the BH scaling factor. Now, by treating B to be
either NL or BH matrix, a projected power iteration to estimate the
second largest eigenvector of B̃ = ∥B∥ I− B is given by:

x(l) = B̃w(l−1), where w(l−1) =
x(l−1) − ⟨x(l−1), v⟩v∥∥x(l−1) − ⟨x(l−1), v⟩v

∥∥
2

,

(17)

with the vector v ∈ RN denoting the largest eigenvector of B̃. Thus,
we start with a random normal vector w0 ∈ RN and iteratively
compute the feature vector x(l) ∈ RN .

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 28 / 34

https://arxiv.org/abs/2307.01951

GNN vs Projected Power Iterations

As a baseline during inference, we perform spectral clustering using
projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices to approximate the Fiedler vector.

NL(G) = I−D−1/2AD−1/2, (15)

BH(G, r) = (r2 − 1)I− rA+D, (16)

where r ∈ R is the BH scaling factor. Now, by treating B to be
either NL or BH matrix, a projected power iteration to estimate the
second largest eigenvector of B̃ = ∥B∥ I− B is given by:

x(l) = B̃w(l−1), where w(l−1) =
x(l−1) − ⟨x(l−1), v⟩v∥∥x(l−1) − ⟨x(l−1), v⟩v

∥∥
2

,

(17)

with the vector v ∈ RN denoting the largest eigenvector of B̃. Thus,
we start with a random normal vector w0 ∈ RN and iteratively
compute the feature vector x(l) ∈ RN .

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 28 / 34

https://arxiv.org/abs/2307.01951

Experimental results

Figure 9: NC1(H), ÑC1(H) metrics (top) and traces of covariance matrices (bottom) across projected power

iterations for NL and BH (a,b), and across layers for GNNs ψF
Θ and ψF′

Θ (c,d).

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 29 / 34

https://arxiv.org/abs/2307.01951

Effect of graph convolutions

Figure 10: Ratio of traces of covariance matrices across projected power iterations for NL and BH (a,b), and across

layers for GNNs ψF
Θ and ψF′

Θ (c,d).

▶ Recall the layer for ψF
Θ : X

(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk

▶ We consider the case of C = 2 (without loss of generality) and
assume that the (l − 1)th-layer features H(l−1) of nodes
belonging to class c = 1, 2 are drawn from distributions D1,D2.

▶ Let µ
(l−1)
1 ,µ

(l−1)
2 ∈ Rdl−1 and Σ

(l−1)
1 ,Σ

(l−1)
2 ∈ Rdl−1×dl−1 as

their mean vectors and covariance matrices of D1,D2.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 30 / 34

https://arxiv.org/abs/2307.01951

Effect of graph convolutions

Figure 10: Ratio of traces of covariance matrices across projected power iterations for NL and BH (a,b), and across

layers for GNNs ψF
Θ and ψF′

Θ (c,d).

▶ Recall the layer for ψF
Θ : X

(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk

▶ We consider the case of C = 2 (without loss of generality) and
assume that the (l − 1)th-layer features H(l−1) of nodes
belonging to class c = 1, 2 are drawn from distributions D1,D2.

▶ Let µ
(l−1)
1 ,µ

(l−1)
2 ∈ Rdl−1 and Σ

(l−1)
1 ,Σ

(l−1)
2 ∈ Rdl−1×dl−1 as

their mean vectors and covariance matrices of D1,D2.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 30 / 34

https://arxiv.org/abs/2307.01951

Effect of graph convolutions

Figure 10: Ratio of traces of covariance matrices across projected power iterations for NL and BH (a,b), and across

layers for GNNs ψF
Θ and ψF′

Θ (c,d).

▶ Recall the layer for ψF
Θ : X

(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk

▶ We consider the case of C = 2 (without loss of generality) and
assume that the (l − 1)th-layer features H(l−1) of nodes
belonging to class c = 1, 2 are drawn from distributions D1,D2.

▶ Let µ
(l−1)
1 ,µ

(l−1)
2 ∈ Rdl−1 and Σ

(l−1)
1 ,Σ

(l−1)
2 ∈ Rdl−1×dl−1 as

their mean vectors and covariance matrices of D1,D2.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 30 / 34

https://arxiv.org/abs/2307.01951

Cont. Effect of graph convolutions

Theorem 4.1

Let C = 2, λi (·), λ−i (·) indicate the i th largest and smallest eigenvalue of a

matrix, β1 =
p−q
p+q

, β2 =
p

n(p+q)
, β3 =

p2+q2

n(p+q)2
, and

TW = W∗(l)⊤
1 W∗(l)

1 + β2
[
W∗(l)⊤

2 W∗(l)
1 +W∗(l)⊤

1 W∗(l)
2

]
+ β3W

∗(l)⊤
2 W∗(l)

2 ,

TB =
(
W∗(l)

1 + β1W
∗(l)
2

)⊤ (
W∗(l)

1 + β1W
∗(l)
2

)
.

Then, the ratios of traces Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
, Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
for layer l ∈ {2, · · · , L} of

a network ψF
Θ are bounded as follows:

∑dl−1
i=1 λ−i(ΣB (H(l−1)))λi (TB)∑dl−1

i=1 λi(ΣB (H(l−1)))
≤ Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
≤

∑dl−1
i=1 λi(ΣB (H(l−1)))λi (TB)∑dl−1

i=1 λi(ΣB (H(l−1)))
,

∑dl−1
i=1 λ−i(ΣW (H(l−1)))λi (TW)∑dl−1

i=1 λi(ΣW (H(l−1)))
≤ Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
≤

∑dl−1
i=1 λi(ΣW (H(l−1)))λi (TW)∑dl−1

i=1 λi(ΣW (H(l−1)))
.

Takeaway: The presence of W1H in the layer formulation of reduces the rate of

reduction of Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
, Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 31 / 34

https://arxiv.org/abs/2307.01951

Summary

▶ By adopting a Neural Collapse (NC) perspective, we analyzed
both empirically and theoretically the within- and between-class
variability of GNN features along the training epochs and along
the layers during inference.

▶ We showed that a partial decrease in within-class variability
(and NC1 metrics) is present in the GNNs’ deepest features but
full collapse is not expected in practise.

▶ We also showed a depthwise decrease in variability metrics,
which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers
in GNNs and along projected power iterations.

▶ Shed light on computation graphs that might be suitable for
graph-rewiring techniques, addressing oversmoothing and
potentially improving generalization on real-world large-scale
graphs!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 32 / 34

https://arxiv.org/abs/2307.01951

Summary

▶ By adopting a Neural Collapse (NC) perspective, we analyzed
both empirically and theoretically the within- and between-class
variability of GNN features along the training epochs and along
the layers during inference.

▶ We showed that a partial decrease in within-class variability
(and NC1 metrics) is present in the GNNs’ deepest features but
full collapse is not expected in practise.

▶ We also showed a depthwise decrease in variability metrics,
which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers
in GNNs and along projected power iterations.

▶ Shed light on computation graphs that might be suitable for
graph-rewiring techniques, addressing oversmoothing and
potentially improving generalization on real-world large-scale
graphs!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 32 / 34

https://arxiv.org/abs/2307.01951

Summary

▶ By adopting a Neural Collapse (NC) perspective, we analyzed
both empirically and theoretically the within- and between-class
variability of GNN features along the training epochs and along
the layers during inference.

▶ We showed that a partial decrease in within-class variability
(and NC1 metrics) is present in the GNNs’ deepest features but
full collapse is not expected in practise.

▶ We also showed a depthwise decrease in variability metrics,
which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers
in GNNs and along projected power iterations.

▶ Shed light on computation graphs that might be suitable for
graph-rewiring techniques, addressing oversmoothing and
potentially improving generalization on real-world large-scale
graphs!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 32 / 34

https://arxiv.org/abs/2307.01951

Summary

▶ By adopting a Neural Collapse (NC) perspective, we analyzed
both empirically and theoretically the within- and between-class
variability of GNN features along the training epochs and along
the layers during inference.

▶ We showed that a partial decrease in within-class variability
(and NC1 metrics) is present in the GNNs’ deepest features but
full collapse is not expected in practise.

▶ We also showed a depthwise decrease in variability metrics,
which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers
in GNNs and along projected power iterations.

▶ Shed light on computation graphs that might be suitable for
graph-rewiring techniques, addressing oversmoothing and
potentially improving generalization on real-world large-scale
graphs!

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 32 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 33 / 34

https://arxiv.org/abs/2307.01951

THANK YOU!

Code: https://github.com/kvignesh1420/gnn collapse

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 34 / 34

https://github.com/kvignesh1420/gnn_collapse
https://arxiv.org/abs/2307.01951

	Neural Collapse in Deep Neural Networks
	Neural Collapse in Graph Neural Networks
	Depth-wise GNN behavior during Inference
	Summary

	anm4:
	4.120:
	4.119:
	4.118:
	4.117:
	4.116:
	4.115:
	4.114:
	4.113:
	4.112:
	4.111:
	4.110:
	4.109:
	4.108:
	4.107:
	4.106:
	4.105:
	4.104:
	4.103:
	4.102:
	4.101:
	4.100:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

