Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction

Zuobai Zhang*, Minghao Xu*, Aurélie Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang

Protein

- Fundamental components in our life
- Involved in many biological processes

Protein Sequence and Structure

- Protein sequence consists of amino acids, a.k.a., residues
- Protein sequences determines structures

Joint Pre-Training

- Existing works
- Pre-training objectives on either sequences or structures
- How to use both modalities for pre-training?
- Diffusion models!

Diffusion Models on Proteins

- Diffusion models capture joint distribution of sequences and structures.
- Diffusion models are equivalent to multi-level denoising.

Sequence diffusion

Structure diffusion

Diffusion Models for Pre-Training (DiffPreT)

Protein Conformer

- Sequence -> Multiple structures, i.e., conformers

How to capture conformer information during pre-training?

Siamese Diffusion Trajectory Prediction (SiamDiff)

Mutual information maximization between conformers

Multi-Level Denoising

- Multiple noise levels

$$
\mathcal{L}:=\mathbb{E}\left[\sum_{t=1}^{T} D_{\mathrm{KL}}\left(q\left(\mathcal{P}^{t-1} \mid \mathcal{P}^{t}, \mathcal{P}^{0}\right) \| p_{\theta}\left(\mathcal{P}^{t-1} \mid \mathcal{P}^{t}\right)\right)\right]
$$

- Better than treating noise level as a hyperparameter ${ }^{[1]}$
- Large noise - coarse-grained - easy
- Small noise - fine-grained - difficult
- However, this is very different for joint diffusion!

Two-Stage Noise Scheduling

Structure perturbation makes it harder to do sequence denoising!!!

Large noise, small acc. Difficult for sequence denoising

Small noise, large loss Difficult for structure denoising

Our solution: Two-stage noise scheduling

Results

Table 1: Atom-level results on Atom3D tasks.

	Method	PIP	MSP	RES			Mean
		AUROC	AUROC	Accuracy	Global ρ	Mean ρ	
	GearNet-Edge	0.868 ± 0.002	0.633 ± 0.067	0.441 ± 0.001	0.782 ± 0.021	0.488 ± 0.012	7.6
	Denoising Score Matching	0.877 ± 0.002	0.629 ± 0.040	0.448 ± 0.001	0.813 ± 0.003	0.518 ± 0.020	5.2
	Residue Type Prediction	0.879 ± 0.004	0.620 ± 0.027	0.449 ± 0.001	0.826 ± 0.020	0.518 ± 0.018	4.4
	Distance Prediction	0.872 ± 0.001	0.677 ± 0.020	0.422 ± 0.001	$\mathbf{0 . 8 4 0} \pm \mathbf{0 . 0 2 0}$	0.522 ± 0.004	4.0
	Angle Prediction	0.878 ± 0.001	0.642 ± 0.013	0.419 ± 0.001	0.813 ± 0.007	0.503 ± 0.012	6.2
	Dihedral Prediction	0.878 ± 0.004	0.591 ± 0.008	0.414 ± 0.001	0.821 ± 0.002	0.497 ± 0.004	6.8
	Multiview Contrast	0.871 ± 0.003	0.646 ± 0.006	0.368 ± 0.001	0.805 ± 0.005	0.502 ± 0.009	7.2
	DiffPreT	0.880 ± 0.005	0.680 ± 0.018	0.452 ± 0.001	0.821 ± 0.007	0.533 ± 0.006	2.4
	SiamDiff	$\overline{\mathbf{0 . 8 8 4} \pm 0.003}$	$\overline{0.698} \pm 0.020$	$\overline{\mathbf{0 . 4 6 0}} \pm \mathbf{0 . 0 0 1}$	$\underline{0.829 \pm 0.012}$	$\overline{\mathbf{0 . 5 4 6}} \pm \mathbf{0 . 0 1 8}$	1.2

Table 2: Residue-level results on EC and Atom3D tasks.

	Method	EC		MSP	PSR		Mean Rank
		AUPR	$\mathrm{F}_{\text {max }}$	AUROC	Global ρ	Mean ρ	
	GearNet-Edge	0.837 ± 0.002	0.811 ± 0.001	0.644 ± 0.023	0.763 ± 0.012	0.373 ± 0.021	7.8
	Denoising Score Matching	0.859 ± 0.003	0.840 ± 0.001	0.645 ± 0.028	0.795 ± 0.027	0.429 ± 0.017	5.0
	Residue Type Prediction	0.851 ± 0.002	0.826 ± 0.005	0.636 ± 0.003	$\underline{0.828} \pm 0.005$	0.480 ± 0.031	5.4
	Distance Prediction	0.858 ± 0.003	0.836 ± 0.001	0.623 ± 0.007	0.796 ± 0.017	0.416 ± 0.021	6.4
	Angle Prediction	0.873 ± 0.003	0.849 ± 0.001	0.631 ± 0.041	0.802 ± 0.015	0.446 ± 0.009	4.2
	Dihedral Prediction	0.858 ± 0.001	0.840 ± 0.001	0.568 ± 0.022	0.732 ± 0.021	0.398 ± 0.022	7.2
	Multiview Contrast	$\underline{0.875 \pm 0.003}$	$\mathbf{0 . 8 5 7} \pm 0.003$	$\mathbf{0 . 7 1 3} \pm \mathbf{0 . 0 3 6}$	0.752 ± 0.012	0.388 ± 0.015	4.0
	DiffPreT	0.864 ± 0.002	0.844 ± 0.001	0.673 ± 0.042	0.815 ± 0.008	0.505 ± 0.007	3.2
	SiamDiff	$\mathbf{0 . 8 7 8} \pm 0.003$	0.857 ± 0.003	$\underline{0.700 \pm 0.043}$	$\mathbf{0 . 8 5 6} \pm \mathbf{0 . 0 0 7}$	$\overline{\mathbf{0 . 5 2 1} \pm 0.016}$	1.2

Good results on all considered tasks

Visualization Results

Random Initialization

First-stage SiamDiff

AF-Q6P3J2-F1-model_v1.pdb

Second-stage SiamDiff

Thanks!

