Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction

Zuobai Zhang*, Minghao Xu*, Aurélie Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang

Protein

- Fundamental components in our life
 - Involved in many biological processes

Protein Sequence and Structure

- Protein sequence consists of amino acids, a.k.a., residues
- Protein sequences determines structures

Joint Pre-Training

- Existing works
 - Pre-training objectives on either sequences or structures
- How to use both modalities for pre-training?
 - Diffusion models!

Diffusion Models on Proteins

- Diffusion models capture joint distribution of sequences and structures.
 - Diffusion models are equivalent to multi-level denoising.

Structure diffusion

Image source: <u>Luo et al. 2022</u> 5

Diffusion Models for Pre-Training (DiffPreT)

Protein Conformer

• Sequence -> Multiple structures, *i.e.*, conformers

How to capture conformer information during pre-training?

Siamese Diffusion Trajectory Prediction (SiamDiff)

Multi-Level Denoising

Multiple noise levels

$$\mathcal{L} \coloneqq \mathbb{E}\left[\sum_{t=1}^{T} D_{\mathrm{KL}}\left(q(\mathcal{P}^{t-1}|\mathcal{P}^{t}, \mathcal{P}^{0})||p_{\theta}(\mathcal{P}^{t-1}|\mathcal{P}^{t})\right)\right]$$

- Better than treating noise level as a hyperparameter^[1]
- Large noise coarse-grained easy
- Small noise fine-grained difficult

However, this is very different for joint diffusion!

Two-Stage Noise Scheduling

Structure perturbation makes it harder to do sequence denoising!!!

Results

Table 1: Atom-level results on Atom3D tasks.

	Method	PIP AUROC	MSP AUROC	Accuracy	PSR		Mean				
	1,201104				Global ρ	Mean ρ	Rank				
w/ pre-training	GearNet-Edge	$0.868 {\pm} 0.002$	0.633 ± 0.067	0.441±0.001	$0.782 {\pm} 0.021$	0.488 ± 0.012	7.6				
	Denoising Score Matching	0.877±0.002	0.629±0.040	0.448±0.001	0.813±0.003	0.518±0.020	5.2				
	Residue Type Prediction	0.879 ± 0.004	0.620 ± 0.027	0.449 ± 0.001	0.826 ± 0.020	0.518 ± 0.018	4.4				
	Distance Prediction	0.872 ± 0.001	0.677 ± 0.020	0.422 ± 0.001	$0.840{\pm}0.020$	0.522 ± 0.004	4.0				
	Angle Prediction	0.878 ± 0.001	0.642 ± 0.013	0.419 ± 0.001	0.813 ± 0.007	0.503 ± 0.012	6.2				
	Dihedral Prediction	0.878 ± 0.004	0.591 ± 0.008	0.414 ± 0.001	0.821 ± 0.002	0.497 ± 0.004	6.8				
	Multiview Contrast	0.871 ± 0.003	0.646 ± 0.006	$0.368{\pm}0.001$	$0.805{\pm}0.005$	0.502 ± 0.009	7.2				
	DiffPreT SiamDiff	$\frac{0.880\pm0.005}{0.884\pm0.003}$	$\frac{0.680\pm0.018}{0.698\pm0.020}$	0.452 ± 0.001 0.460 ± 0.001	0.821 ± 0.007 0.829 ± 0.012	0.533 ± 0.006 0.546 ± 0.018	2.4 1.2				
	SiailiDili	0.004±0.003	0.090±0.020	0.400±0.001	0.629 ± 0.012	0.340±0.010	1.4				

Table 2: Residue-level results on EC and Atom3D tasks.

	Method	EC		MSP	PSR		Mean
	11202204	AUPR	F_{max}	AUROC	Global ρ	Mean ρ	Rank
w/ pre-training	GearNet-Edge	0.837±0.002	0.811 ± 0.001	0.644 ± 0.023	0.763 ± 0.012	0.373±0.021	7.8
	Denoising Score Matching	0.859 ± 0.003	0.840±0.001	0.645±0.028	0.795±0.027	0.429±0.017	5.0
	Residue Type Prediction	0.851 ± 0.002	0.826 ± 0.005	0.636 ± 0.003	0.828 ± 0.005	0.480 ± 0.031	5.4
	Distance Prediction	0.858 ± 0.003	0.836 ± 0.001	0.623 ± 0.007	$\overline{0.796\pm0.017}$	0.416 ± 0.021	6.4
	Angle Prediction	0.873 ± 0.003	0.849 ± 0.001	0.631 ± 0.041	0.802 ± 0.015	0.446 ± 0.009	4.2
	Dihedral Prediction	0.858 ± 0.001	0.840 ± 0.001	0.568 ± 0.022	0.732 ± 0.021	0.398 ± 0.022	7.2
	Multiview Contrast	0.875 ± 0.003	$0.857 {\pm} 0.003$	0.713 ± 0.036	0.752 ± 0.012	$0.388 {\pm} 0.015$	4.0
	DiffPreT	0.864 ± 0.002	0.844±0.001	0.673±0.042	0.815±0.008	0.505±0.007	3.2
	SiamDiff	0.878 ± 0.003	$0.857 {\pm} 0.003$	0.700 ± 0.043	$0.856 {\pm} 0.007$	0.521 ± 0.016	1.2

Good results on all considered tasks

Visualization Results

Random Initialization

First-stage SiamDiff

Second-stage SiamDiff

Thanks!

