FACE: Evaluating Natural Language Generation with Fourier Analysis of Cross-Entropy

Zuhao Yang Yingfang Yuan Yang Xu

Shuo Zhan Huajun Bai Kefan Chen

Motivation

Overall workflow

Key step 1: Cross-entropy Estimation

$$\mathcal{E} = [c_1, c_2, \dots, c_{T-1}] \triangleq [-\log P(t_2|t_1), -\log P(t_3|t_1, t_2), \dots, -\log P(t_T|t_1, t_2, \dots, t_{T-1})]$$
(1)

Key step 2. Fast Fourier Transform

$$X(\omega_k) \triangleq \sum_{n=0}^{N-1} x(t_n) e^{-j\omega_k t_n}, \ k = 0, 1, \dots, N-1$$
(2)

Key step 3. Spectral Similarity Metrics

Experimental results - Model sizes

- Task: Open-ended text generation
- Three domains: wiki, news, stories
- Models tested:
 - GPT2: small, medium, large, x-large
 - BLOOM: 560m, 7b
 - OPT: 125m, 6.7b

Domain	Model	Dataset	Prompt Length	Maximum Generation Length	Number of Generations		
Wiki text	GPT2/OPT/BLOOM	WikiText-103	35 tokens	1024 tokens	5000		
News	GPT2/OPT/BLOOM	RealNews	35 tokens	1024 tokens	5000		
Stories	GPT2/OPT/BLOOM	WritingPrompts	varying	1024 tokens	5000		

Model sizes (cont.)

Domain	Metric	GPT2-sm	GPT2-xl	vs.	Voting	OPT-125m	OPT-6.7b	vs.	Voting	BLOOM-560m	BLOOM-7.1b	vs.	Voting
Wiki text	Diversity (↑)	0.733	0.753	L		0.645	0.789	L		0.533	0.732	L	E
	Coherence (\uparrow)	0.595	0.624	L	т	0.614	0.634	L	т	0.926	0.819	S	
	Zipf Coefficient (\downarrow)	0.990	0.975	L	L	0.989	1.016	S	L	1.092	0.980	L	
	Self-BLEU (↓)	0.459	0.424	L		0.423	0.379	L		0.280	0.422	S	
	MAUVE (↑)	0.677	0.186	S		0.169	0.265	L		0.517	0.184	S	L
	$SO(\uparrow)$	0.414	0.406	S		0.424	0.436	L	_	0.426	0.432	L	
	$CORR(\uparrow)$	0.806	0.781	S	S	0.771	0.769	S	L	0.675	0.789	L	
	$SAM(\downarrow)$	0.199	0.213	S		0.216	0.217	S		0.258	0.208	L	
	SPEAR (\uparrow)	0.022	0.023	L		0.026	0.029	L		0.059	0.023	S	
	Diversity (↑)	0.890	0.897	L	L	0.853	0.876	L	L	0.740	0.870	L	S
	Coherence (\uparrow)	0.613	0.640	L		0.663	0.663	S		0.897	0.785	S	
	Zipf Coefficient (\downarrow)	0.961	0.958	L		0.965	0.968	L		0.964	0.966	S	
	Self-BLEU (↓)	0.619	0.573	L		0.611	0.543	L		0.384	0.501	S	
News	MAUVE (↑)	0.393	0.281	S		0.162	0.130	S	S	0.014	0.095	L	L
	$SO(\uparrow)$	0.424	0.412	S		0.438	0.440	L		0.436	0.437	L	
	$CORR(\uparrow)$	0.757	0.723	S	S	0.746	0.732	S		0.615	0.733	S	
	$SAM(\downarrow)$	0.224	0.240	S		0.229	0.236	S		0.281	0.234	L	
	SPEAR (\uparrow)	0.021	0.019	S		0.017	0.021	.021 L		0.048	0.019	S	
	Diversity ([†])	0.743	0.785	L		0.769	0.875	L		0.527	0.830	L	
	Coherence (\uparrow)	0.421	0.420	S	т	0.440	0.388	S	т	0.880	0.660	S	S
Stories	Zipf Coefficient (\downarrow)	1.097	1.085	L	L	1.021	1.003	L	L	0.999	1.058	S	
	Self-BLEU (↓)	0.617	0.565	L		0.587	0.511	L		0.180	0.455	S	
	MAUVE (↑)	0.504	0.121	S		0.025	0.013	S	~	0.006	0.008	L	
	SO (†)	0.411	0.402	S	S	0.406	0.405	S		0.350	0.418	L	L
	$CORR(\uparrow)$	0.813	0.787	S		0.737	0.705	S	S	0.573	0.772	L	
	$SAM(\downarrow)$	0.195	0.209	S		0.231	0.245	S		0.300	0.214	L	
	SPEAR (\uparrow)	0.023	0.022	S		0.036	0.041	L		0.050	0.027	S	

Experimental results - Sampling methods

Sampling Method	Perplexity	Self-BLEU	Zipf Coefficient	Repetition	SO (†)	<i>CORR</i> (†)	$SAM\left(\downarrow\right)$	SPEAR (\uparrow)
Human	12.38	<u>0.31</u>	<u>0.93</u>	0.28	-	-	-	-
Greedy	1.50	0.50	1.00	73.66	0.20	0.56	0.31	0.04
Beam $(b=16)$	1.48	0.44	0.94	28.94	0.21	0.31	0.40	0.04
Stochastic Beam (b=16)	19.20	0.28	0.91	0.32	0.37	0.49	0.33	0.04
Pure Sampling	22.73	0.28	0.93	0.22	0.41	0.63	0.28	0.03
Sampling $(t=0.9)$	10.25	0.35	0.96	0.66	0.42	0.61	0.29	0.03
Top- k (k =40)	6.88	0.39	0.96	0.78	0.40	0.64	0.28	0.03
Top- k (k =640)	13.82	0.32	0.96	0.28	0.42	0.63	0.28	0.03
Top- k (k =40, t =0.7)	3.48	0.44	1.00	8.86	0.34	0.61	0.29	0.03
Nucleus $(p=0.95)$	13.13	0.32	0.95	0.36	0.42	0.63	0.28	0.03
Contrastive Decoding	14.39	0.54	1.04	0.24	0.44	0.75	0.23	0.17

Experimental results - Human judgments

								(
Metric	Generation Perplexity	Zipf Coefficient	Repetition	Distinct-4	Self-BLEU	SO	MAUVE	<i>SO</i> -S	MAUVE-S
Human-like/BT	0.810	0.833	-0.167	0.738	0.595	0.881	0.952	0.357	0.214
Interesting/BT	0.643	0.524	-0.143	0.524	0.405	0.762	0.810	$\ 0.524$	0.667
Sensible/BT	0.738	0.690	-0.071	0.595	0.524	0.786	0.857	∥ 0.995	0.706

- We examined the correlation between FACE and human judgment scores, using data collected from MAUVE's paper (Pillutla et al., 2021)
- FACE-SO (spectral overlap) has high correlation with human judgments.
- SO has higher correlations than MAUVE on 2 out 3 dimensions (on the subset of data strictly comparing human vs. model text)

Conclusion and Limitations

- FACE Metrics for NLG based on the Fourier analysis of cross-entropy
- FACE can distinguish human and model-generated language with good performance in open-ended generation tasks.
- FACE is computationally efficient with easy-to-interpret output.
- FACE also carries intuitive cognitive meanings of language, that is, better language models should produce similar spectral representations as human, which reflects the cognitive load of language processing.
- More models/generation tasks will be tested in the future.
- Code and data are available at: https://github.com/CLCS-SUSTech/FACE