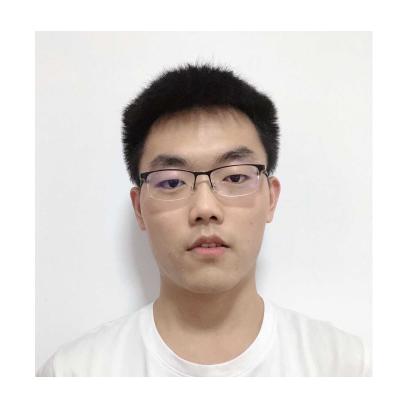


Dream the Impossible: Outlier Imagination with Diffusion Models

NeurlPS 2023



Xuefeng Du UW-Madison

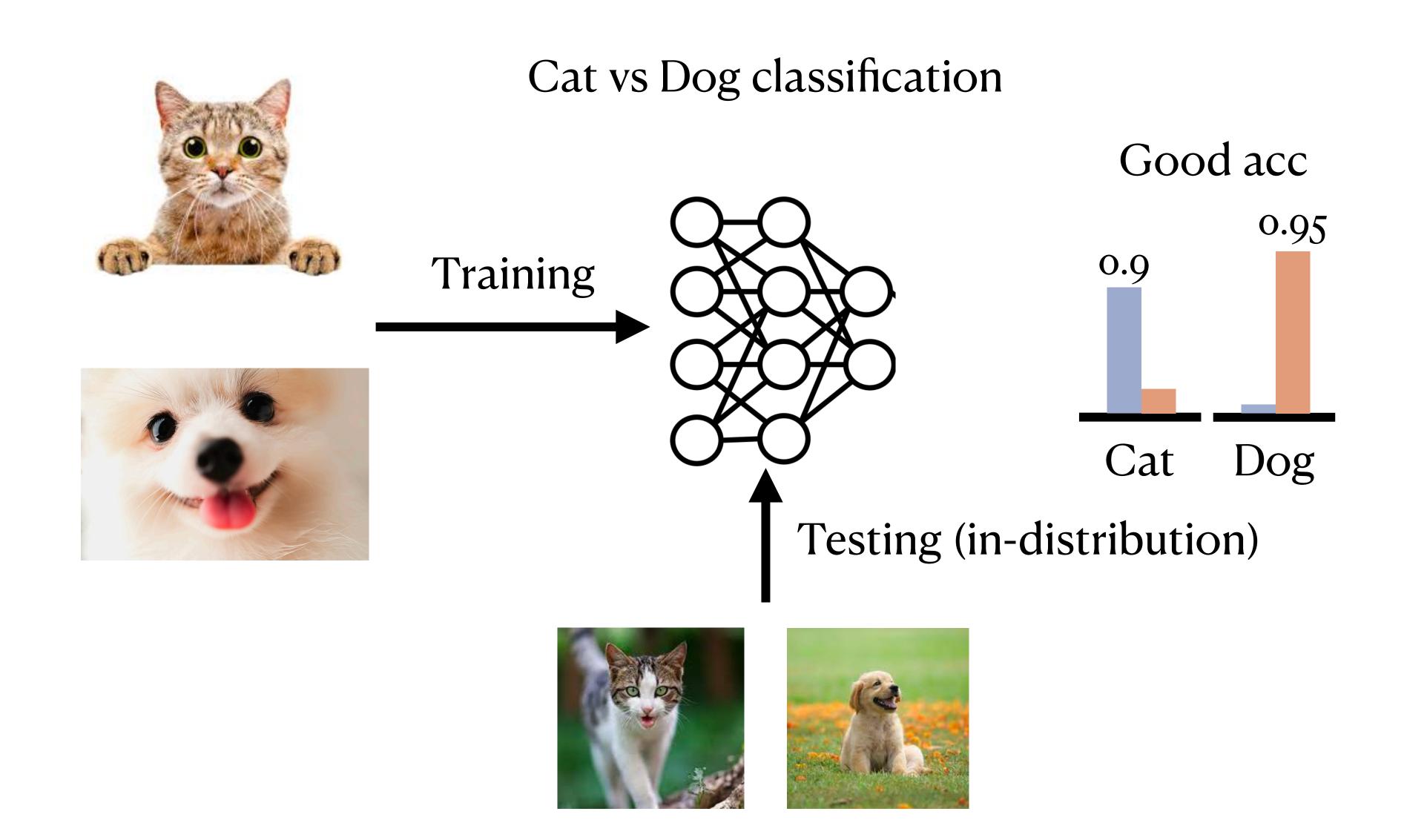
Yiyou Sun UW-Madison

Jerry Zhu UW-Madison

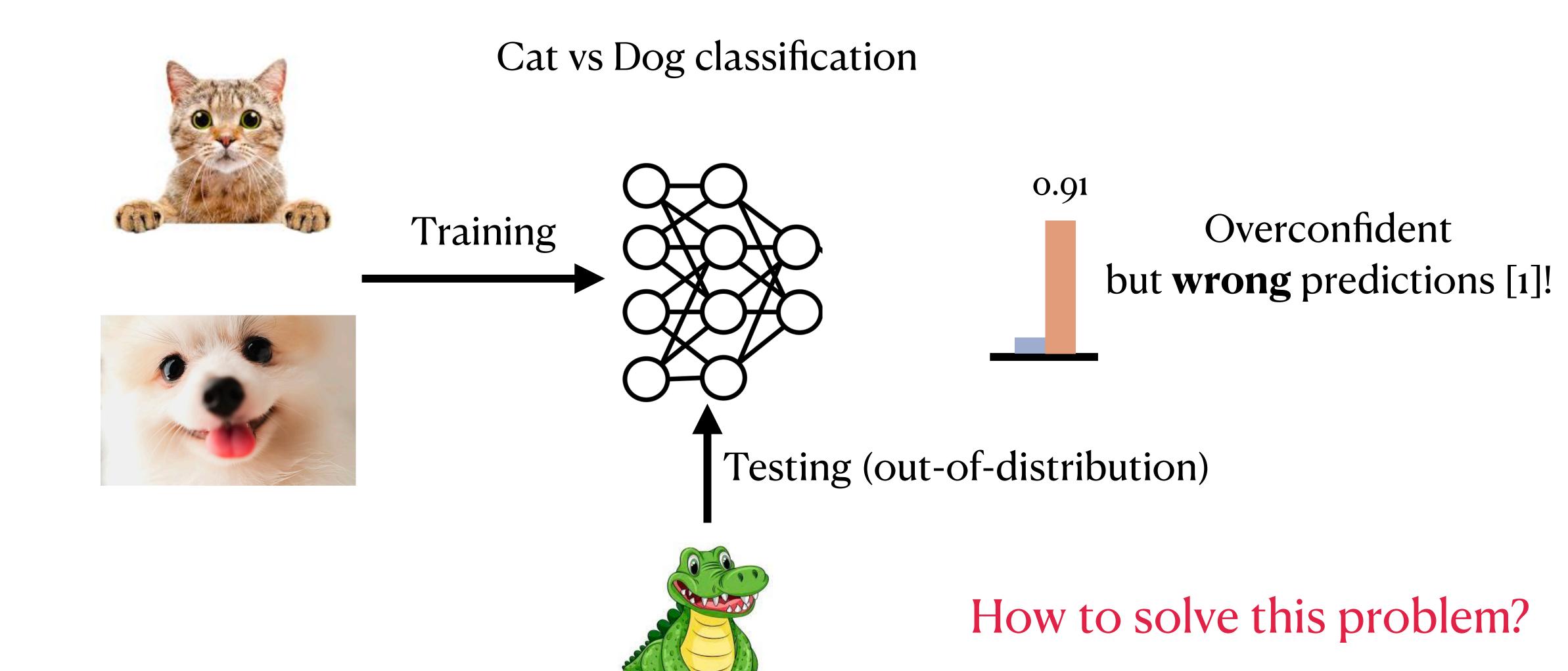
Sharon Yixuan Li UW-Madison

Background

Closed-world ML on In-Distribution (ID) Data

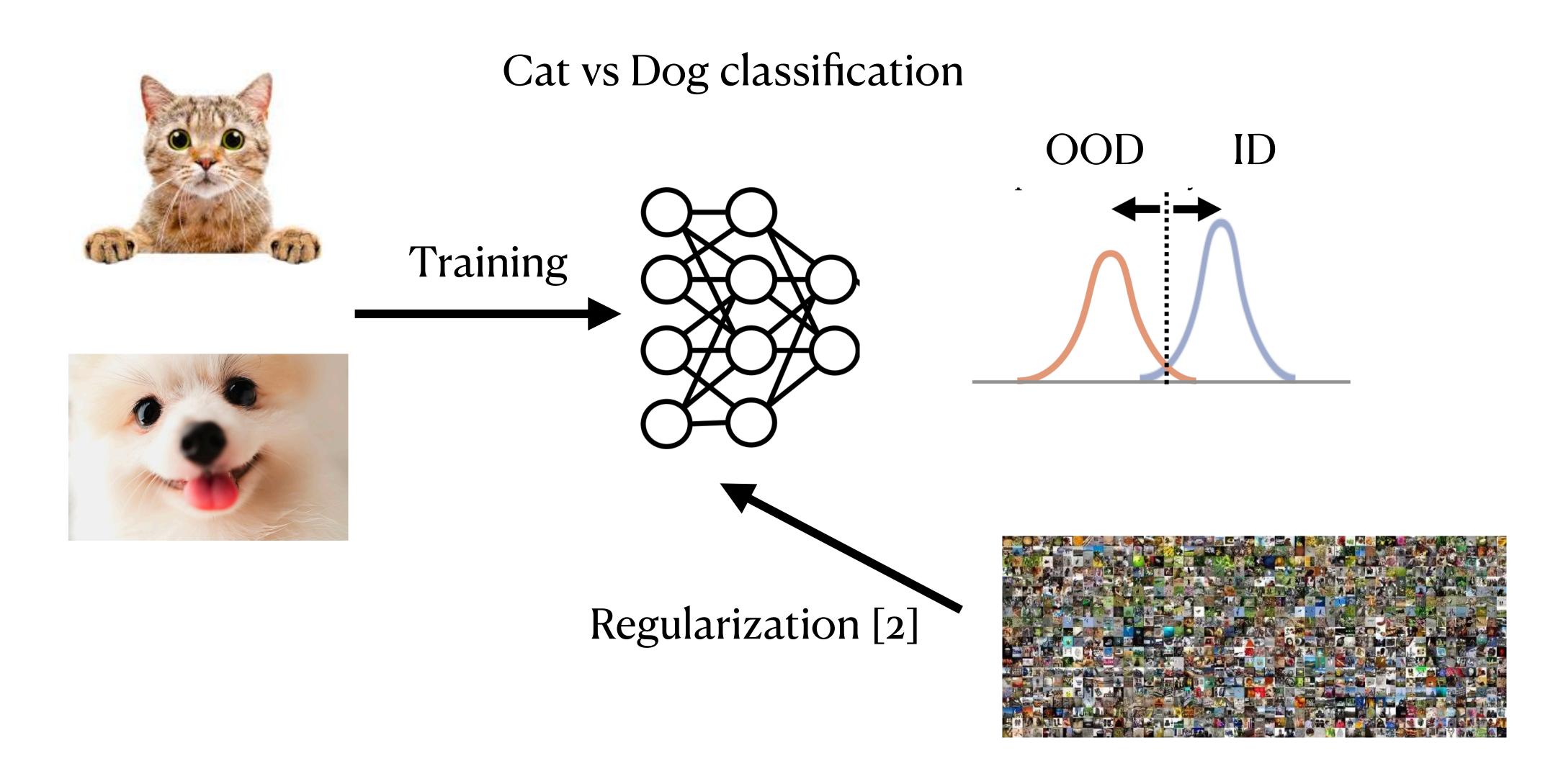


ML Meets Out-of-distribution (OOD) Data

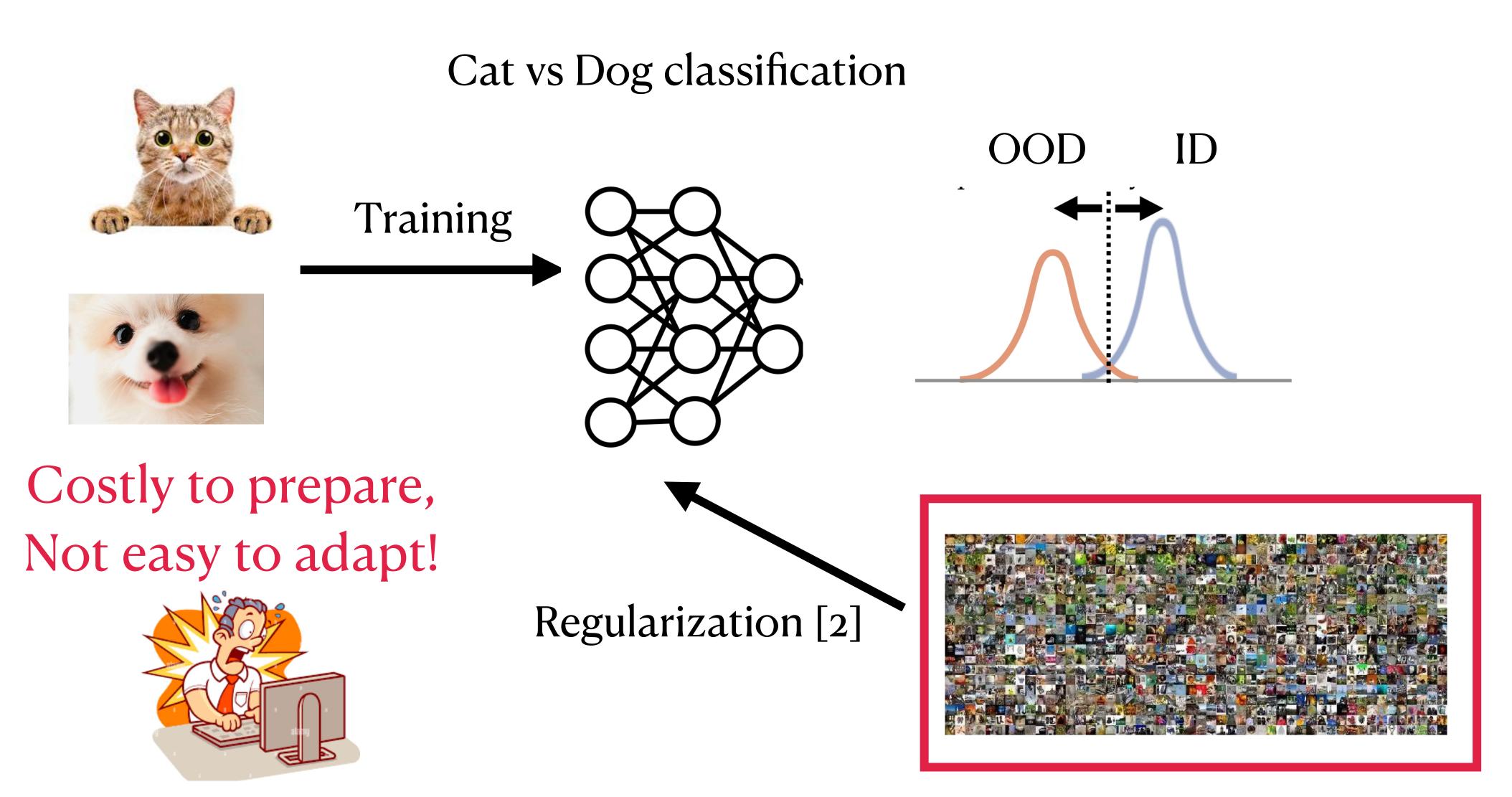


[1] Du et.al., Vos: Learning what you don't know by virtual outlier synthesis, ICLR 2022

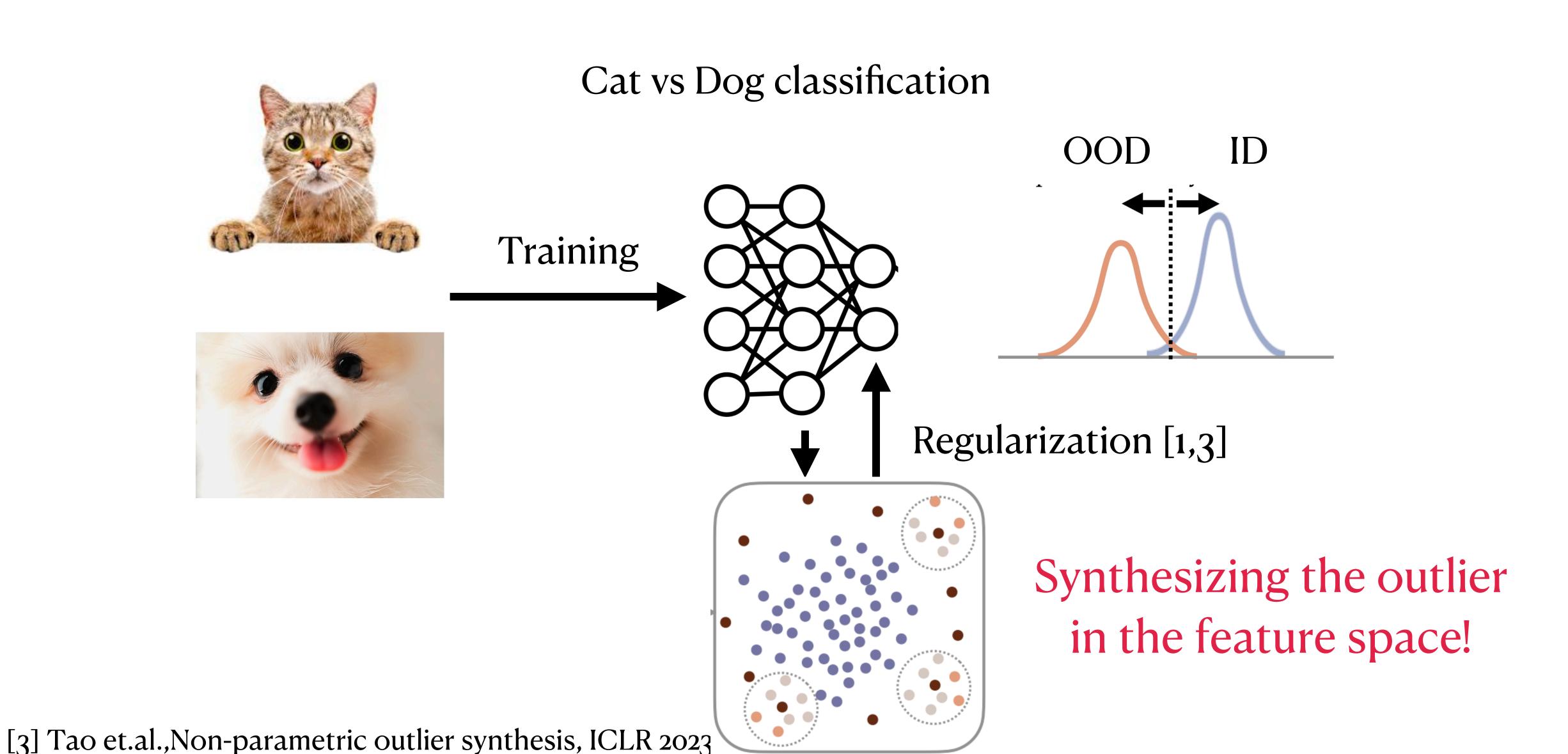
OOD Detection with Real Outliers



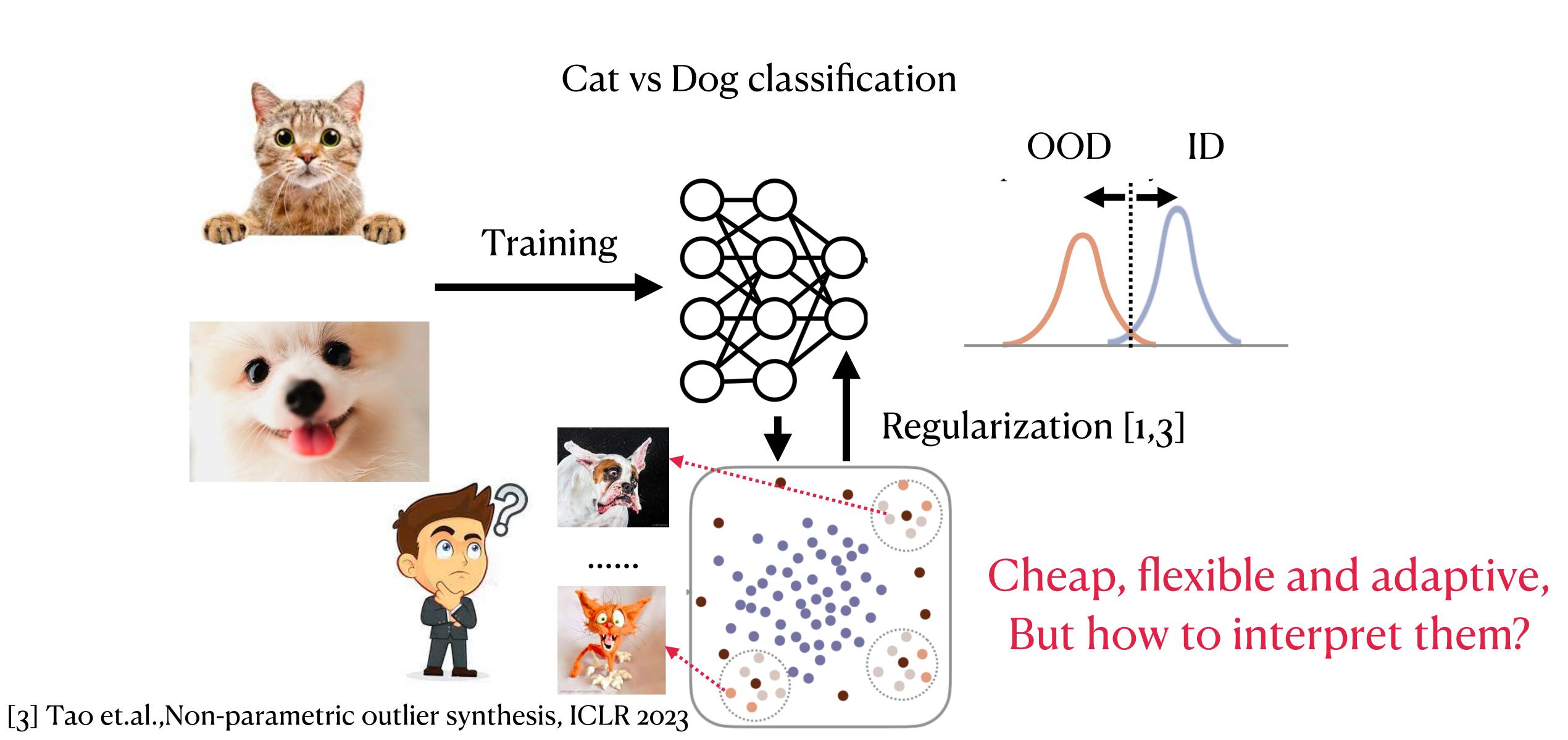
OOD Detection with Real Outliers



OOD Detection with Virtual Outliers

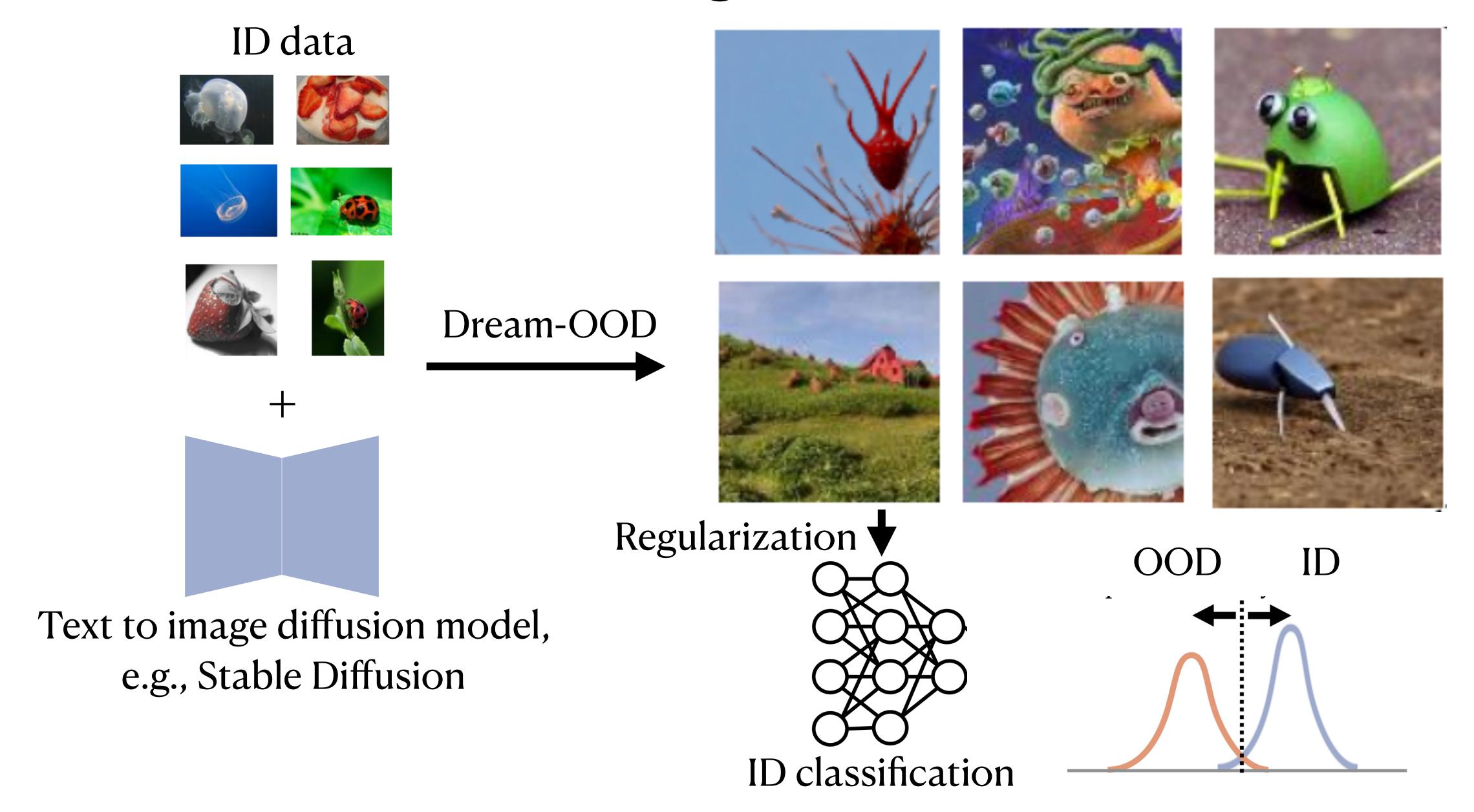


OOD Detection with Virtual Outliers

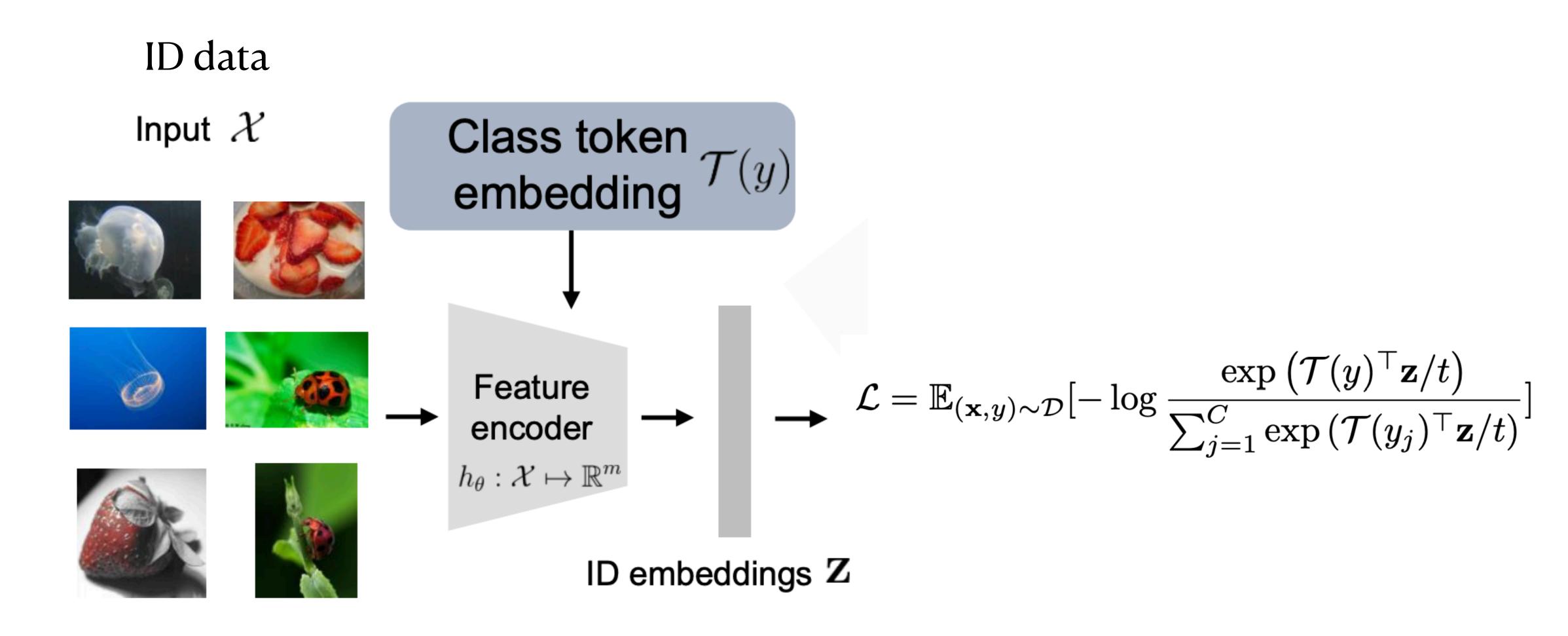


Dream-00D

Dream-OOD: Outlier Imagination with Diffusion Models



Dream-OOD: Learning the Text-Conditioned Latent Space



Dream-OOD: Learning the Text-Conditioned Latent Space

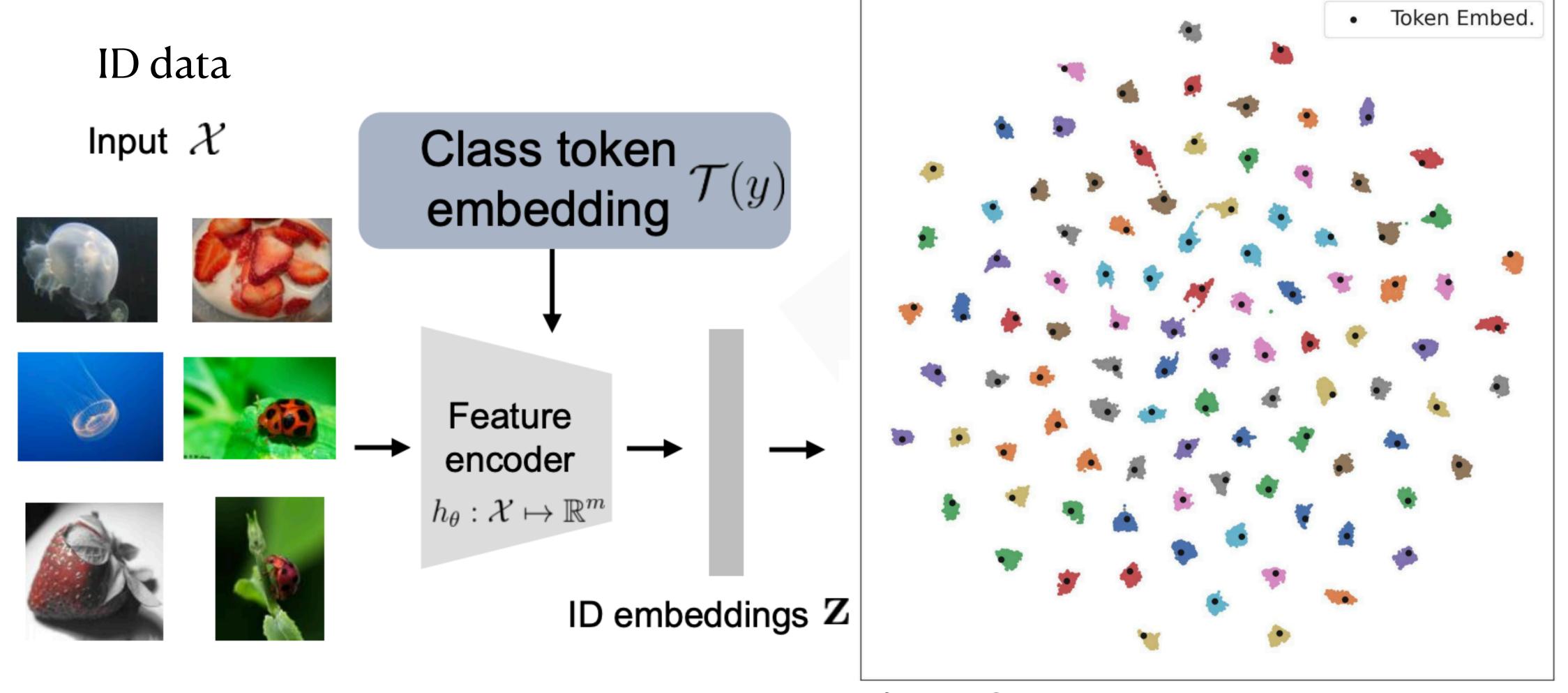
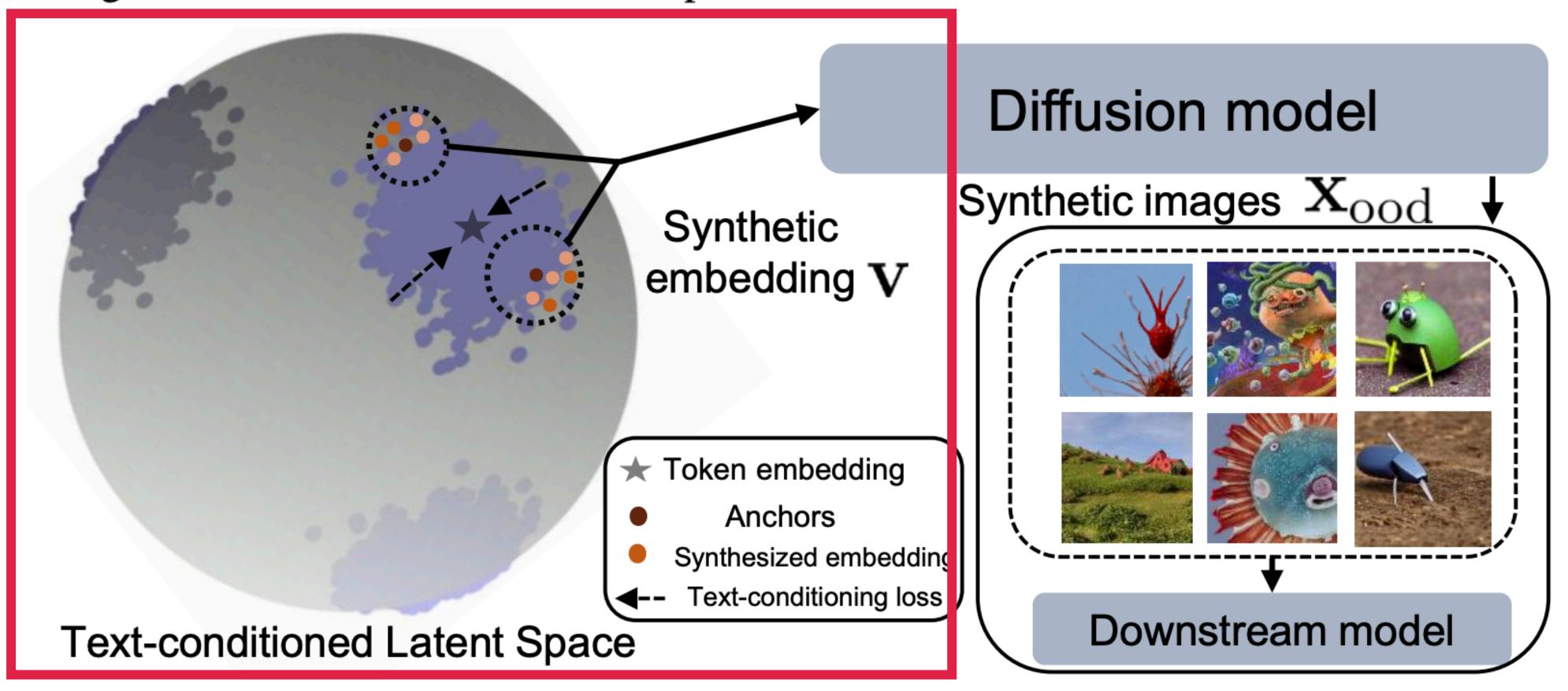


Figure 3: TSNE visualization of learned feature embeddings using \mathcal{L} . Black dots indicate token embeddings, one for each class.

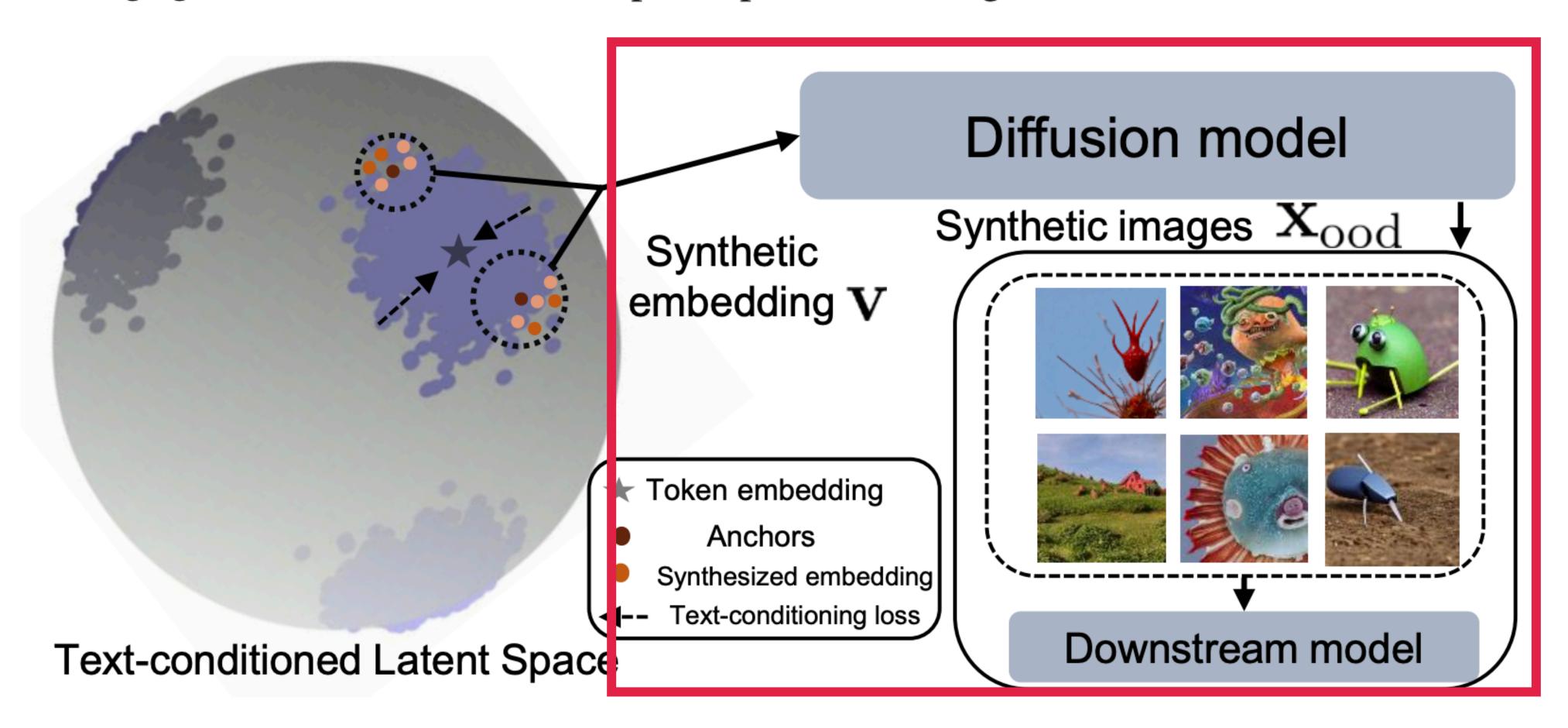
Dream-OOD: Outlier Imagination via Text-Conditioned Latent

1. Sample OOD in the latent space: draw new embeddings v that are in the low-likelihood region of the text-conditioned latent space.



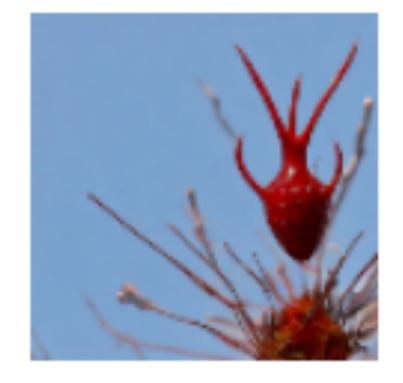
Dream-OOD: Outlier Imagination via Text-Conditioned Latent

2. Image generation: decode v into a pixel-space OOD image via diffusion model.



$$\mathbf{x}_{\mathrm{ood}} \sim P(\mathbf{x}|\mathbf{v})$$

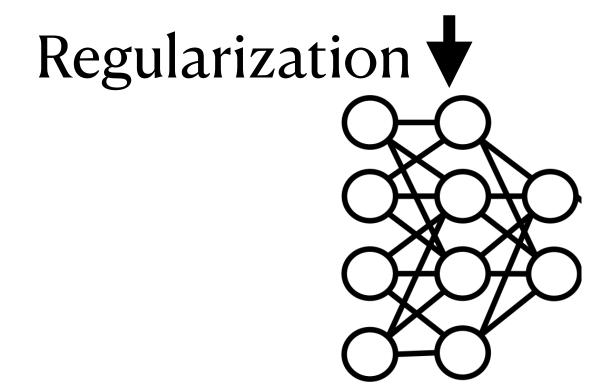
Dream-OOD: Learning with Imagined Outlier Images

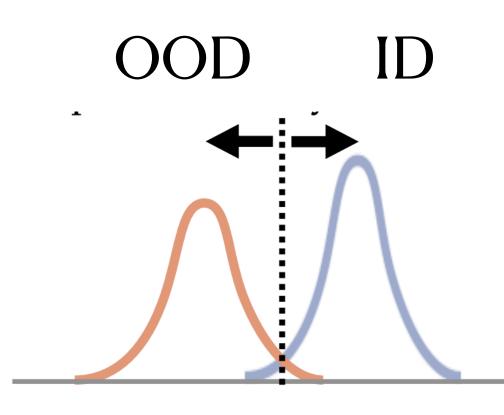




Level-set estimation loss [1]

$$egin{aligned} \mathcal{L}_{ ext{ood}} &= \mathbb{E}_{\mathbf{x}_{ ext{ood}}} \left[-\log rac{1}{1 + \exp^{\phi(E(f_{ heta}(\mathbf{x}_{ ext{ood}})))}}
ight] \ &+ \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{ ext{in}}} \left[-\log rac{\exp^{\phi(E(f_{ heta}(\mathbf{x})))}}{1 + \exp^{\phi(E(f_{ heta}(\mathbf{x})))}}
ight] \end{aligned}$$



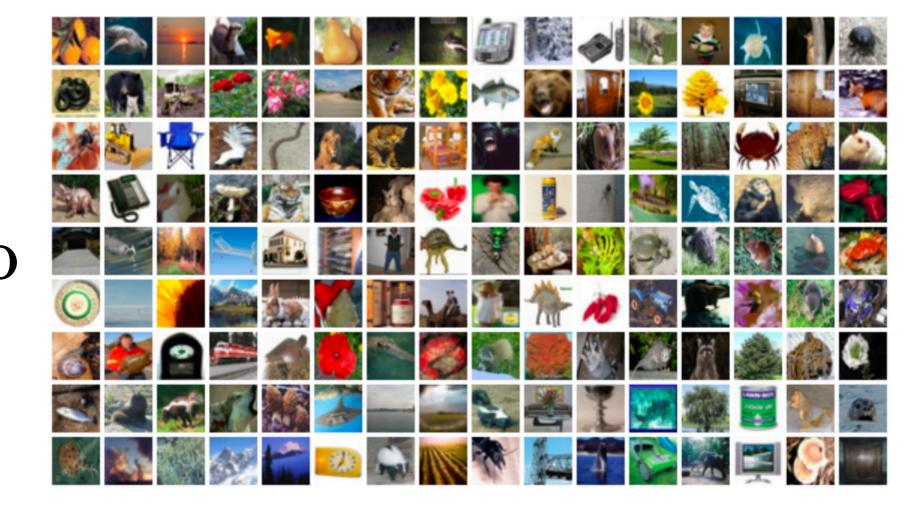


Experiments

Dataset

In-distribution

Cifar-100



,etc.

Dream-OOD can Significantly Improve OOD Detection

					OOD Dataset		
Methods	iNaturalist		PLACES		SUN		
	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUR	
MSP [33]	31.80	94.98	47.10	90.84	47.60	90.	
ODIN [52]	24.40	95.92	50.30	90.20	44.90	91.	
Mahalanobis [51]	91.60	75.16	96.70	60.87	97.40	62.	
Energy [56]	32.50	94.82	50.80	90.76	47.60	91.	
GODIN [40]	39.90	93.94	59.70	89.20	58.70	90.	
KNN [96]	28.67	95.57	65.83	88.72	58.08	90.	
ViM [103]	75.50	87.18	88.30	81.25	88.70	81.	
ReAct [94]	22.40	96.05	45.10	92.28	37.90	93.	
DICE [95]	37.30	92.51	53.80	87.75	45.60	89.	
Synthesis-based methods							
GAN [50]	83.10	71.35	83.20	69.85	84.40	67.	
VOS [18]	43.00	93.77	47.60	91.77	39.40	93.	
NPOS [98]	53.84	86.52	59.66	83.50	53.54	87.	
DREAM-OOD (Ours)	24.10 ±0.2	96.10 ±0.1	39.87 ±0.1	93.11 ±0.3	36.88 ±0.4	93.3	

Synthesized outlier embeddings (in orange) reside in the boundary of ID features!

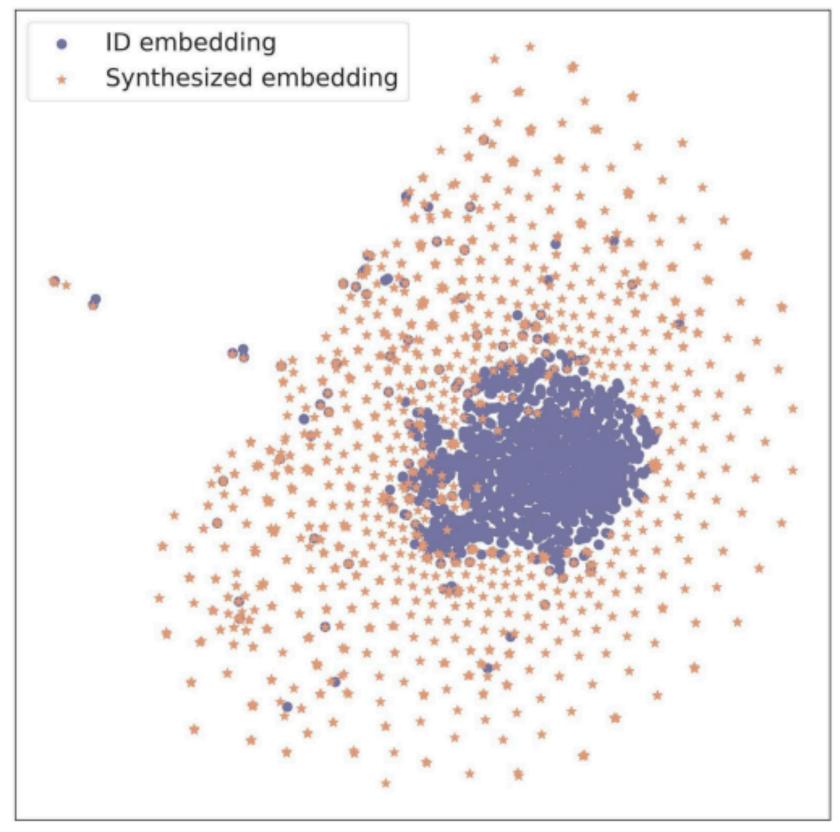


Figure 4: TSNE visualization of ID embeddings (purple) and the sampled outlier embeddings (orange), for the class "hen" in IMAGENET.

Please check the paper for more results, including the improved model generalization.

Summary

- Machine learning models can make overconfident predictions on OOD data.
- Existing works are either costly in preparation or lacks interpretability.
- Dream-OOD mitigates the problem via diffusion models by
 - 1 Learning a text-conditioned latent space.
 - ② Sampling outlier embeddings in the latent space.
 - 3 Decoding the embeddings into outlier images with diffusion models.

Paper: https://arxiv.org/pdf/2309.13415

Code: https://github.com/deeplearning-wisc/dream-ood