

PlanE: Representation Learning over Planar Graphs

Radoslav Dimitrov*, Zeyang Zhao*, Ralph Abboud, İsmail İlkan Ceylan

DEPARTMENT OF COMPUTER SCIENCE

GNNs learn incomplete graph invariants

GNNs learn incomplete graph invariants

- MPNNs are bounded by 1-WL

Indistinguishable by 1-WL

GNNs learn incomplete graph invariants

- MPNNs are bounded by 1-WL

Expressiveness comes at a computational cost

Indistinguishable by 1-WL

GNNs learn incomplete graph invariants

- MPNNs are bounded by 1-WL

Expressiveness comes at a computational cost

- Higher order GNNs

Indistinguishable by 1-WL

GNNs learn incomplete graph invariants

- MPNNs are bounded by 1-WL

Expressiveness comes at a computational cost

- Higher order GNNs

 G_1 G_2

Indistinguishable by 1-WL

Efficient algorithms for **planar** graph isomorphism exist

GNNs learn incomplete graph invariants

- MPNNs are bounded by 1-WL

Expressiveness comes at a computational cost

- Higher order GNNs

Indistinguishable by 1-WL

Efficient algorithms for **planar** graph isomorphism exist

- Weinberg, 1968: Triconnected planar graphs in $O(|V|^2)$
- Tarjan & Hopcroft, 1971: Extend to all planar graphs

Can we efficiently learn **complete** planar graph invariants?

The PlanE framework

A. Input Graph

G. Update

BasePlanE: a simple instance of PlanE

Update: Node-level by readout from each of these encoders.

BasePlanE: a simple Instance of PlanE

The runtime of one BasePlanE layer is $O(|V|d^2)$, with a **one-off** pre-processing of $O(|V|^2)$.

BasePlane requires a **logarithmic** number of layers:

Theorem 6.1. For any planar graphs $G_1 = (V_1, E_1, \zeta_1)$ and $G_2 = (V_2, E_2, \zeta_2)$, there exists a parametrization of BASEPLANE with at most $L = \lceil \log_2(\max\{|V_1|, |V_2|\}) \rceil + 1$ layers, which computes a complete graph invariant, that is, the final graph-level embeddings satisfy $\mathbf{z}_{G_1}^{(L)} \neq \mathbf{z}_{G_2}^{(L)}$ if and only if G_1 and G_2 are not isomorphic.

Empirical Evaluation

Expressiveness experiments: EXP & P3R

We evaluate on EXP consisting of planar graphs representing SAT instances.

We propose a new synthetic dataset P3R:

Learning the equivalence classes of 3-regular planar graphs with 10 nodes.

EXP			P3R		
Model	Accuracy (%)	Mod	lel	Accuracy (%)	
GCN GCN-RNI(N) 3-GCN	50.0 ± 0.00 98.0 ± 1.85 99.7 ± 0.004	GIN PPG	N	$\begin{array}{c} 11.1 \pm 0.00 \\ \textbf{100} \pm 0.00 \end{array}$	
BASEPLANE	100 ±0.00	BAS	ePlanE	$100{\scriptstyle~\pm 0.00}$	

Structure detection experiment: QM9_{CC}

We evaluate the ability of detecting structural graph information without explicit access to the target structure. The task we propose is:

Given a subset of graphs from QM9, predict the graph-level clustering coefficient (CC).

Scalability experiment: TIGER

BasePlanE manages to scale to large planar graphs, while competitive models suffer from memory constraints.

		BASEPLANE		PPGN		ESAN	
Dataset	#Nodes	Pre.	Train	Pre.	Train	Pre.	Train
TIGER-Alaska-2K	2000	9.8 sec	0.1 sec	3.4 sec	5.9 sec	4.6 sec	87.73 sec
TIGER-Alaska-10K	10000	50 sec	0.33 sec	OOM	OOM	OOM	OOM
TIGER-Alaska-93K	93366	3.7 h's	2.2 sec	OOM	OOM	OOM	OOM

Real-world dataset: QM9

Property	R-GIN		R-GAT		R-SPN		BASEPLANE
	base	+FA	base	+FA	k = 5	k = 10	
mu	$2.64{\scriptstyle\pm0.11}$	$2.54{\scriptstyle \pm 0.09}$	2.68 ± 0.11	$2.73 {\scriptstyle \pm 0.07}$	$2.16 \scriptstyle \pm 0.08$	$2.21{\scriptstyle \pm 0.21}$	$1.97_{\pm 0.03}$
alpha	$4.67{\scriptstyle \pm 0.52}$	$2.28 {\scriptstyle \pm 0.04}$	$4.65{\scriptstyle \pm 0.44}$	$2.32 {\scriptstyle \pm 0.16}$	$1.74{\scriptstyle \pm 0.05}$	1.66 ± 0.06	$1.63 \scriptstyle \pm 0.01$
HOMO	$1.42 {\scriptstyle \pm 0.01}$	1.26 ± 0.02	1.48 ± 0.03	$1.43{\scriptstyle \pm 0.02}$	$1.19{\scriptstyle \pm 0.04}$	$1.20{\scriptstyle\pm0.08}$	$1.15_{\pm 0.01}$
LUMO	$1.50 {\pm} 0.09$	$1.34{\scriptstyle \pm 0.04}$	$1.53 {\pm} 0.07$	1.41 ± 0.03	$1.13 \scriptstyle \pm 0.01$	$1.20{\pm}0.06$	$1.06 {\scriptstyle \pm 0.02}$
gap	$2.27 {\scriptstyle \pm 0.09}$	$1.96 {\scriptstyle \pm 0.04}$	$2.31 {\pm} 0.06$	$2.08 {\scriptstyle \pm 0.05}$	1.76 ± 0.03	$1.77{\pm}0.06$	$\boldsymbol{1.73} \scriptstyle \pm 0.02$
R2	$15.63{\scriptstyle \pm 1.40}$	$12.61{\scriptstyle \pm 0.37}$	$52.39{\scriptstyle\pm42.5}$	$15.76{\scriptstyle \pm 1.17}$	$10.59{\scriptstyle \pm 0.35}$	$10.63{\scriptstyle \pm 1.01}$	$10.53 \scriptstyle \pm 0.55$
ZPVE	$12.93{\scriptstyle \pm 1.81}$	$5.03 {\pm} 0.36$	$14.87{\scriptstyle\pm2.88}$	$5.98{\scriptstyle \pm 0.43}$	$3.16 {\scriptstyle \pm 0.06}$	$2.58 \scriptstyle \pm 0.13$	2.81 ± 0.16
U0	$5.88{\scriptstyle \pm 1.01}$	$2.21{\scriptstyle \pm 0.12}$	$7.61{\scriptstyle \pm 0.46}$	$2.19{\scriptstyle \pm 0.25}$	$1.10 {\pm} 0.03$	$0.89{\scriptstyle \pm 0.05}$	$0.95 \scriptstyle \pm 0.04$
U	$18.71 {\pm} {23.36}$	$2.32{\scriptstyle \pm 0.18}$	$6.86{\scriptstyle \pm 0.53}$	$2.11 {\scriptstyle \pm 0.10}$	$1.09{\scriptstyle\pm0.05}$	$0.93 \scriptstyle \pm 0.03$	0.94 ± 0.04
Н	$5.62 {\scriptstyle \pm 0.81}$	$2.26 {\scriptstyle \pm 0.19}$	$7.64{\scriptstyle \pm 0.92}$	$2.27{\scriptstyle \pm 0.29}$	$1.10 {\pm} 0.03$	$0.92{\scriptstyle \pm 0.03}$	$0.92_{\pm 0.04}$
G	$5.38{\scriptstyle \pm 0.75}$	$2.04{\scriptstyle \pm 0.24}$	$6.54{\scriptstyle \pm 0.36}$	$2.07 {\scriptstyle \pm 0.07}$	$1.04{\scriptstyle\pm0.04}$	$0.83 \scriptstyle \pm 0.05$	$0.88{\scriptstyle \pm 0.04}$
Cv	$3.53{\scriptstyle \pm 0.37}$	$1.86 {\scriptstyle \pm 0.03}$	$4.11 {\pm} 0.27$	$2.03 {\scriptstyle \pm 0.14}$	$1.34{\scriptstyle\pm0.03}$	1.23 ± 0.06	1.20 ± 0.06
Omega	$1.05{\scriptstyle \pm 0.11}$	$0.80{\scriptstyle \pm 0.04}$	$1.48 {\scriptstyle \pm 0.87}$	$0.73{\scriptstyle \pm 0.04}$	$0.53{\scriptstyle \pm 0.02}$	$0.52{\scriptstyle \pm 0.02}$	$0.45_{\pm 0.01}$

Real-world datasets: ZINC & MolHIV

	ZINC(12k)	ZINC(12k)	ZINC(Full)			
Edge Features	No	Yes	Yes		MolHIV (OGB)	
GCN GIN(-E) PNA	$\begin{array}{c} 0.278 {\scriptstyle \pm 0.003} \\ 0.387 {\scriptstyle \pm 0.015} \\ 0.320 {\scriptstyle \pm 0.032} \end{array}$	$- \\ 0.252 {\pm 0.014} \\ 0.188 {\pm 0.004}$	$- \\ 0.088 {\scriptstyle \pm 0.002} \\ 0.320 {\scriptstyle \pm 0.032}$		GCN GIN PNA	$75.58{\scriptstyle \pm 0.97} \\ 77.07{\scriptstyle \pm 1.40} \\ 79.05{\scriptstyle \pm 1.32}$
ESAN GSN CIN	$- \\0.140 {\scriptstyle \pm 0.006} \\0.115 {\scriptstyle \pm 0.003}$	$\begin{array}{c} 0.102{\scriptstyle\pm0.003}\\ 0.101{\scriptstyle\pm0.010}\\ 0.079{\scriptstyle\pm0.006}\end{array}$	- 0.022±0.002		ESAN GSN CIN	$\begin{array}{c} 78.00{\scriptstyle\pm1.42}\\ \textbf{80.39}{\scriptstyle\pm0.90}\\ \textbf{80.94}{\scriptstyle\pm0.57}\end{array}$
HIMP	-	0.151 ± 0.006	$0.036{\scriptstyle \pm 0.002}$	-	HIMP	$78.80{\scriptstyle \pm 0.82}$
(E-)BASEPLAN	$E 0.124 \pm 0.004$	$0.076 {\scriptstyle \pm 0.003}$	$0.028{\scriptstyle\pm0.002}$		E-BASEPLANE	$80.04{\scriptstyle \pm 0.50}$

Summary and outlook

We propose PlanE as a framework for planar representation learning, and we show that the BasePlanE instance can learn **complete** graph invariants over planar graphs.

We evaluate BasePlanE on synthetic datasets for **expressiveness** (EXP & P3R), **scalability** (TIGER-Alaska), and detecting **structural information** ($QM9_{CC}$).

We show that BasePlanE is competitive on **molecular** real-world datasets (QM9, Zinc, MolHIV).

Implementation: <u>https://github.com/ZZYSonny/PlanE</u> Paper: <u>https://arxiv.org/abs/2307.01180</u>