

Exploring Blind Spots of Vision Models

Sriram Balasubramanian*

Gaurang Sriramanan*

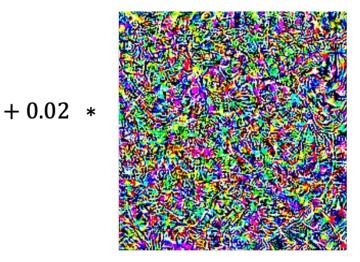
Vinu Sankar Sadasivan

Soheil Feizi

Introduction

• Input over-sensitivity well studied in adversarial literature

Prediction: Hamster Confidence = 99.99%



50-step PGD targeted attack with $\varepsilon = \frac{8}{255}$ scaled by 50x

Prediction: Banjo Confidence = 100%

Introduction

- Input *over-sensitivity* well studied in adversarial literature
- We study input *under-sensitivity* for general models
- Uncover extent of excessive invariance in common vision models?

Over-Sensitivity

$$||f(x) - f(x')|| \uparrow$$
$$x \approx x'$$

Under-Sensitivity

$$f(x) \approx f(x')$$

$$||x - x'||$$

Mathematical Preliminaries

- For $g: \mathbb{R}^d \to \mathbb{R}, L_g(c) = \{x \in \mathcal{X} : g(x) = c\}$ is called the Level Set
- Important Property: For any curve in the Level Set $\gamma(t): [0,1] \rightarrow L_g(c)$

$$\frac{d}{dt}(g(\gamma(t))) = 0 = \langle \nabla g(\gamma(t)), \gamma'(t) \rangle$$

Lemma 1. If $g : \mathbb{R}^d \to \mathbb{R}$ is a continuously differentiable function, then each of its regular level sets is an (d-1) dimensional submanifold of \mathbb{R}^d .

• How expansive are these submanifolds for common ML models?

Can we Traverse along Level Sets?

goose

Source Image x_s

Confidence for class "goose" = 0.997 Confidence for class "Scottish Terrier" = 0 Scottish Terrier

Target Image $oldsymbol{x}_t$

Confidence for class "goose" = 0 Confidence for class "Scottish Terrier" = 1.0

Level Set Traversal (LST) Algorithm

Compute Input Gradient

$$\Delta \boldsymbol{x} = \boldsymbol{x}_t - \boldsymbol{x}$$
$$\boldsymbol{g} = \nabla_{\boldsymbol{x}} CE(f(\boldsymbol{x}), \boldsymbol{y})$$

Compute Orthogonal Projection

$$c_{//} = (\boldsymbol{g} \cdot \Delta \boldsymbol{x})/||\boldsymbol{g}||^2$$

 $\Delta \boldsymbol{x}_{\perp} = \eta(\Delta \boldsymbol{x} - c_{//}\boldsymbol{g})$

Update Image

 $x = x_{\text{new}}$

$$egin{aligned} m{x}_{||} &= \Pi_{\infty}(m{x}_{||} - \epsilonm{g}, -\epsilon, \epsilon) \ m{x}_{ ext{new}} &= m{x} + \Deltam{x}_{\perp} + m{x}_{||} \end{aligned}$$

Verify Model Confidence

 $\begin{array}{l} \text{if } f(\boldsymbol{x}_s)[j] - f(\boldsymbol{x}_{\text{new}})[j] > \delta \text{ then} \\ \text{ return } \boldsymbol{x} \end{array} \end{array}$

 \boldsymbol{x} $x_{
m new}$ $\nabla_{\mathbf{z}}$ C/19.

LST Path in Input Space for ResNet-50

goose

Source Image x_s

Confidence for class "goose" = 0.997 Confidence for class "Scottish Terrier" = 0 Scottish Terrier

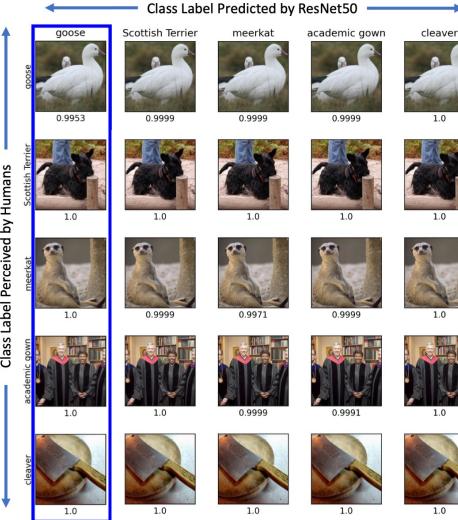
Target Image $oldsymbol{x}_t$

Confidence for class "goose" = 0 Confidence for class "Scottish Terrier" = 1.0

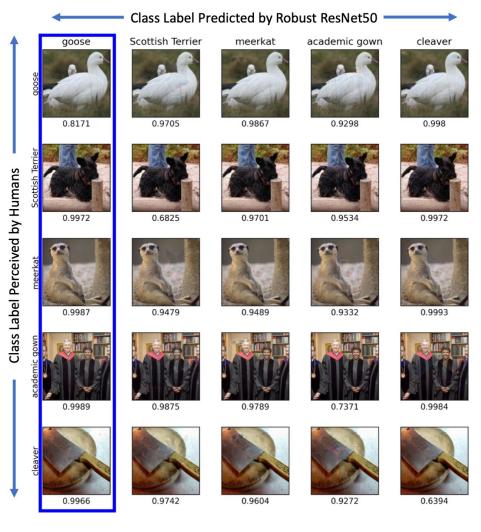
LST Blind Spots

LST over arbitrary Source-Target pairs

Class Label Perceived by Humans

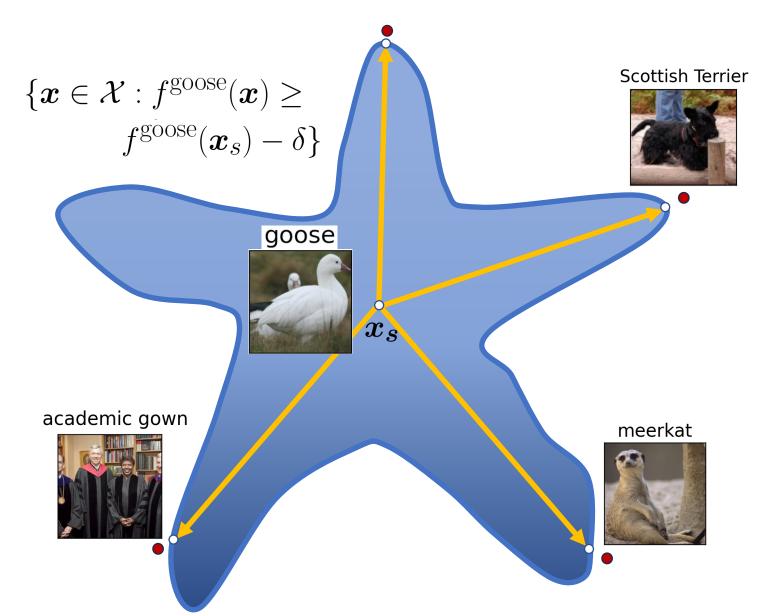


Normally Trained ResNet-50

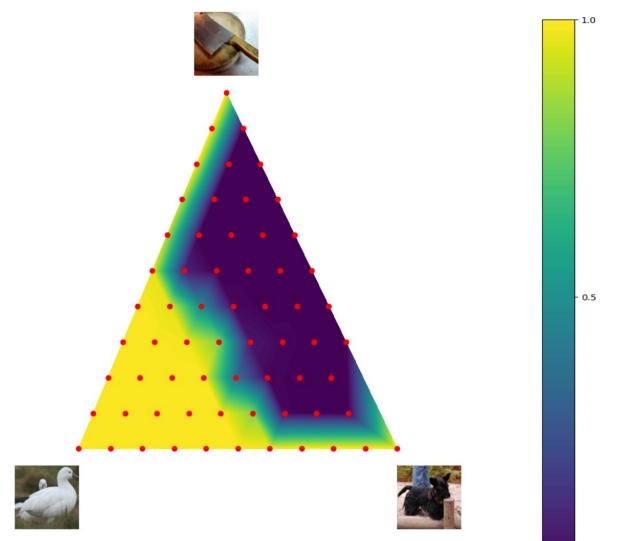


Adversarially Trained ResNet-50

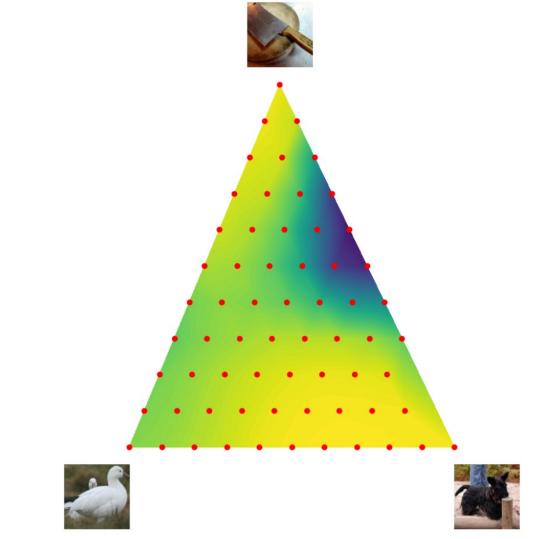
Star-like Substructure of Level Sets



Star-like Substructure of Level Sets



Normally Trained ResNet-50

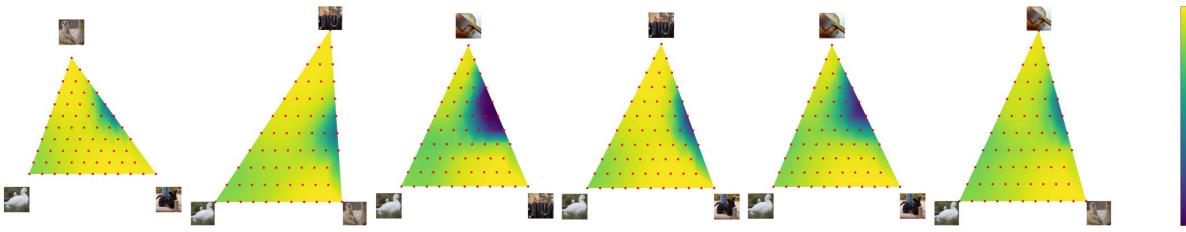


Adversarially Trained ResNet-50

Star-like Substructure of Level Sets

Normally Trained ResNet-50:

Adversarially Trained ResNet-50:



Quantitative Analysis of Blind Spot Invariance

Distance metrics:

- 1. RMSE: Root mean squared error
- 2. Max norm (ℓ_{∞}) : Maximum absolute difference
- 3. SSIM:

Structural Similarity Index

4. LPIPS:

Perceptual Image Similarity

Confidence metrics:

- 1. Source confidence (p_{src}) : Confidence of the model for the source image
- 2. Average path confidence Mean confidence over the linear paths connecting the source image to LST outputs
- 3. Average Δ confidence:

Mean confidence over the enclosed triangle

4. Average Δ fraction for a given δ : Fraction of triangle over which confidence is at least $p_{src} - \delta$

Quantitative Analysis of Blind Spot Invariance

Table 1: Quantitative image distance metrics between output of Level Set Traversal and target images.

Models	RMSE : $\mu \pm \sigma$	ℓ_∞ dist: $\mu \pm \sigma$	SSIM: $\mu \pm \sigma$	LPIPS dist: $\mu \pm \sigma$
ResNet-50 (Normal)	0.008 ± 0.001	0.046 ± 0.020	0.990 ± 0.021	0.002 ± 0.004
ResNet-50 (AT)	0.029 ± 0.008	0.746 ± 0.124	0.915 ± 0.041	0.057 ± 0.037
DeiT-S (Normal)	0.011 ± 0.002	0.116 ± 0.030	0.973 ± 0.024	0.024 ± 0.017
DeiT-S (AT)	0.046 ± 0.010	0.821 ± 0.117	0.898 ± 0.041	0.219 ± 0.068

Table 2: Quantitative confidence metrics over the triangular convex hull (Δ) of a given source image and two target LST blindspot image-pairs and over linear interpolant paths between source and blindspot images. (For reference, a random classifier would have confidence of 0.001)

Models	$p_{ m src}$	Avg Δ Conf.	Avg Δ Frac. ($\mu \pm \sigma$)				Avg Path Conf.
	$(\mu \pm \sigma)$	$(\mu \pm \sigma)$	$\delta = 0.0$	$\delta = 0.1$	$\delta=0.2$	$\delta=0.3$	$(\mu \pm \sigma)$
ResNet-50 (Normal)	$\mid 0.99 \pm 0.02$	0.56 ± 0.10	0.13 ± 0.15	0.51 ± 0.11	0.53 ± 0.1	0.54 ± 0.10	0.96 ± 0.05
ResNet-50 (AT)	0.88 ± 0.11	0.83 ± 0.09	0.49 ± 0.29	0.79 ± 0.13	0.85 ± 0.1	0.88 ± 0.09	0.93 ± 0.06
DeiT-S (Normal)	0.85 ± 0.06	0.68 ± 0.05	0.54 ± 0.11	0.67 ± 0.06	0.71 ± 0.06	0.73 ± 0.06	0.94 ± 0.02
DeiT-S (AT)	0.76 ± 0.08	0.59 ± 0.07	0.20 ± 0.09	0.43 ± 0.14	0.63 ± 0.15	0.76 ± 0.12	0.73 ± 0.06

Conclusions

- Using LST, we find that the level sets of common vision models is **remarkably expansive**
- The **linear** path from any given source image to LST blind spot outputs retain **high model confidence** throughout for arbitrary targets
- This unveils a **star-like substructure** for the equi-confidence level sets of common models
- Adversarially trained models are significantly more **under-sensitive**, over inputs **well beyond** the original threat model

Thank You!

