Small Total-Cost Constraints
 in Contextual Bandits with Knapsacks [CBwK], with Application to Fairness

Evgenii Chzhen - Christophe Giraud - Gilles Stoltz

Zhen Li
x_{*}^{*} BNP PARIBAS

Neurips 2023

CBwK framework - Novelty is $T B$ with components of order \sqrt{T}

Known: finite \mathcal{A}, rounds T, average costs $\mathbf{B} \in[0,1]^{d}$

Unknowns:

Context distribution ν on \mathcal{X}
Scalar mean-payoff function $r: \mathcal{X} \times \mathcal{A} \rightarrow[0,1]$
Vector-valued mean-cost function c: $\mathcal{X} \times \mathcal{A} \rightarrow[-1,1]^{d}$
For rounds $t=1,2, \ldots, T$:
Observe context $\mathbf{x}_{t} \sim \nu$, and pick $a_{t} \in \mathcal{A}$
Get payoff r_{t} and costs \mathbf{c}_{t} with cond. exp. $r\left(\mathbf{x}_{t}, a_{t}\right)$ and $\mathbf{c}\left(\mathbf{x}_{t}, a_{t}\right)$
Goals (cf. fairness costs: $T \mathbf{B}$ as small as possible, possibly \sqrt{T})
Ensure $\quad \sum_{t=1}^{T} c_{t} \leqslant T \mathbf{B} \quad$ a.s. while maximizing $\sum_{t=1}^{T} r_{t}$

First reference for CBwK: Badanidiyuru, Langford, Slivkins [2014]
State of the art $=T$ B at best $T^{3 / 4}$: Agrawal and Devanur [2016], Han et al. [2022]
$\operatorname{opt}(r, \mathbf{c}, \mathbf{B})$
$=\sup _{\pi: \mathcal{X} \rightarrow \mathcal{P}(\mathcal{A})}\left\{\mathbb{E}_{\mathbf{X} \sim \nu}\left[\sum_{a \in \mathcal{A}} r(\mathbf{X}, a) \pi_{a}(\mathbf{X})\right]: \mathbb{E}_{\mathbf{X} \sim \nu}\left[\sum_{a \in \mathcal{A}} \mathbf{c}(\mathbf{X}, a) \pi_{a}(\mathbf{X})\right] \leqslant \mathbf{B}\right\}$
$=\sup _{\pi: \mathcal{X} \rightarrow \mathcal{P}(\mathcal{A})} \inf _{\boldsymbol{\lambda} \geqslant \mathbf{0}} \mathbb{E}_{\mathbf{X} \sim \nu}\left[\sum_{a \in \mathcal{A}} r(\mathbf{X}, a) \pi_{a}(\mathbf{X})+\left\langle\boldsymbol{\lambda}, \mathbf{B}-\sum_{a \in \mathcal{A}} \mathbf{c}(\mathbf{X}, a) \pi_{a}(\mathbf{X})\right\rangle\right]$
$=\min _{\boldsymbol{\lambda} \geqslant \mathbf{0}} \mathbb{E}_{\mathbf{X} \sim \nu}\left[\max _{a \in \mathcal{A}}\{r(\mathbf{X}, a)-\langle\mathbf{c}(\mathbf{X}, a)-\mathbf{B}, \boldsymbol{\lambda}\rangle\}\right]$
\rightarrow Suffices to learn r and c, as well as λ^{\star}

Learn r and c : via structural assumptions; uniform bounds
Linear model: Agrawal and Devanur [2016], based on LinUCB from Abbasi-Yadkori et al. [2011]. Logistic model: Li and Stoltz [2022], based on Logistic-UCB1 from Faury et al. [2020].

Target: $\quad \operatorname{opt}(r, \mathbf{c}, \mathbf{B})=\min _{\boldsymbol{\lambda} \geqslant 0} \mathbb{E}_{\mathbf{X} \sim \nu}\left[\max _{a \in \mathcal{A}}\{r(\mathbf{X}, a)-\langle\mathbf{c}(\mathbf{X}, a)-\mathbf{B}, \boldsymbol{\lambda}\rangle\}\right]$
\rightarrow Gradient descent on dual / best response for primal var.

Algorithm with fixed step size γ
For $t=1,2, \ldots, T$:

1. Play $a_{t} \in \underset{a \in \mathcal{A}}{\arg \max }\left\{\widehat{r}_{t-1}\left(\mathbf{x}_{t}, a\right)-\left\langle\widehat{\mathbf{c}}_{t-1}\left(\mathbf{x}_{t}, a\right)-(\mathbf{B}-b 1), \boldsymbol{\lambda}_{t-1}\right\rangle\right\}$
2. Make gradient step $\boldsymbol{\lambda}_{t}=\left(\boldsymbol{\lambda}_{t-1}+\gamma\left(\widehat{\mathbf{c}}_{t-1}\left(\mathbf{x}_{t}, a\right)-(\mathbf{B}-b \mathbf{1})\right)\right)_{+}$
3. Update estimates \widehat{r}_{t} and $\widehat{\mathbf{c}}_{t}$ of functions r and \mathbf{c}

Analysis

Cost margin $T b$, of order $\left(1+\left\|\lambda^{\star}\right\|\right) / \gamma$; adds $\left\|\lambda^{\star}\right\|(T b+\sqrt{T})$ to regret
\rightarrow Oracle choice $\left(1+\left\|\lambda^{\star}\right\|\right) / \sqrt{T}$ for γ, leads to $\left(1+\left\|\lambda^{\star}\right\|\right) \sqrt{T}$ regret

Reminder of the issue: oracle choice $\left(1+\left\|\lambda^{\star}\right\|\right) / \sqrt{T}$ for γ
Typical bypass by estimating $\left\|\lambda^{\star}\right\|$ on \sqrt{T} preliminary rounds (see, e.g.: Agrawal and Devanur [2016], Han et al. [2022]) leads to $\min \mathbf{B} \geqslant T^{-1 / 4}$

Theorem

Algorithm based on a careful doubling trick $\gamma_{k}=2^{k} / \sqrt{T}$ W.h.p.: controls cumulative costs \& regret of order $\left(1+\left\|\lambda^{\star}\right\|\right) \sqrt{T}$ Only requires min B to be larger than $1 / \sqrt{T}$ up to poly-log terms

Note 1: if null-cost action, $\left\|\lambda^{\star}\right\| \leqslant \frac{2 \mathrm{opt}(r, \mathbf{c}, \mathbf{B})}{\min \mathbf{B}}=$ usual bound
Note 2: explicit, closed-form bounds in the article
Note 3: fairness example from Chohlas-Wood et al. [2021]

