

Southwestern University of Finance and Economics (SWUFE) University of Electronic Science and Technology of China (UESTC)

Enhancing Knowledge Transfer for Task Incremental Learning with Data-free Subnetwork

Xiaojun Shan xiaojunshan@std.uestc.edu.cn

Qiang Gao*, Xiaojun Shan*, Yuchen Zhang, Fan Zhou. the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Catastrophic Forgetting & Knowledge Transfer

- ✓ Neuron-wise mask
- ✓ Data-free memory reply

- Networks are usually over-parameterized
- ✓ Lottery Ticket Hypothesis
- ✓ Sub-networks

Continual learning

- Regularization-based approaches
- Rehearsal-based approaches
- > Architecture-based approaches

Knowledge Transfer

- Bayes model and regression methods
- Mask-based methods
- Few-shot replay methods

Discover compact subnetworks for (task) incremental learning

Lottery Ticket Hypothesis: a randomly-initialized neural network contains a subnetwork such that, when trained in isolation, can match the performance of the original network.

Neuron-wise mask

determines which neurons and their corresponding weights should be used for a new coming task

Data-free memory reply

- measure the mask similarity scores
- craft the impressions of the most similar task via data-free memory replay

DSN : Enhancing Knowledge Transfer for Task

Incremental Learning with Data-free Subnetwork

Challenges

- Catastrophic Forgetting
- Fail to obtain a subnetwork for each corresponding task
- Backward knowledge transfer is not considered

Neuron-wise Mask:

- Layer mask $\boldsymbol{m}_t^l \in \boldsymbol{m}_t$: $\boldsymbol{m}_t^l = \sigma(\gamma \cdot \boldsymbol{e}_t^l)$,
- Forward : $\boldsymbol{h}_t^l = \boldsymbol{h}_t^l \odot \boldsymbol{m}_t^l$,
- Backward: $\theta_{lij} = \theta_{lij} \frac{\partial \mathcal{L}}{\partial \theta_{lij}} \odot \max(m_t^{l,i}, m_t^{l-1,j}),$

(a) Dense Initialization

(b) Selection for Task t

(c) Consolidation for Task 1

 $\hat{x}_t^{c,i} = \operatorname{argmin} \mathcal{L}_{IC}(\mathcal{H}(\cdot, \boldsymbol{\theta}(\boldsymbol{n} \odot \boldsymbol{m}_t), \tau), \hat{\boldsymbol{o}}_t^c),$ (9)

Data-free Replay:

Insights

- A class similarity matrix Mt describe the correlation between different classes.
- Model outputs representation sampled form Dirichlet distribution

for
$$c = 1 : C_{argmax(S_t)}$$
 do
Set the concentration parameter $\boldsymbol{\alpha}^c = M_{argmax(S_t)}^c$;
for $b = B_1, B_2, \dots, B_{C_{argmax}(S_t)}$ do
for $i = 1 : b$ do
Sample $\hat{\boldsymbol{o}}_{argmax(S_t)}^c \sim Dir(C_{argmax}(S_t), \beta_b \times \boldsymbol{\alpha}^c)$;
Initialize $\hat{x}_{argmax}^{c,i}$ to random noise and craft $\hat{x}_{argmax}^{c,i}$ via Eq.(9);
 $\mathcal{I}_{argmax}(S_t) \leftarrow \mathcal{I}_{argmax}(S_t) \cup \hat{x}_{argmax}^{c,i}(S_t)$;

Figure 7: Confusion Matrix of the first task in TinyImageNet.

Overall Performance

Table 1: Performance comparison of the proposed method and baselines on four datasets.												
Model	PMNIST			RMNIST			CIFAR-100			TinyImageNet		
	ACC(%)	BWT(%)	Trans(%)	ACC(%)	BWT(%)	Trans(%)	ACC(%)	BWT(%)	Trans(%)	ACC(%)	BWT(%)	Trans(%)
SGD	81.37	-24.52	-17.06	72.83	-25.32	-25.08	59.82	-24.09	-24.02	30.24	-19.12	-19.96
EWC	94.20	-0.32	-4.23	94.86	-0.73	-3.05	67.15	-8.61	-16.69	40.85	-5.24	-9.35
mean-IMM	80.10	-1.13	-18.33	88.81	-0.96	-9.10	56.08	0.23	-27.76	30.10	-3.21	-20.10
mode-IMM	93.13	-4.17	-5.30	89.48	-7.40	-8.43	61.22	-21.49	-22.62	32.26	-19.02	-17.94
PGN	91.89	0.00	-6.54	90.01	0.00	-7.90	53.84	-14.66	-30.00	24.47	-12.12	-25.73
DEN	91.96	-0.41	-6.47	91.53	-0.52	-6.38	59.32	-1.24	-12.79	33.86	-1.30	-3.88
RCL	92.28	0.00	-6.15	93.97	0.00	-3.94	61.77	0.00	-22.07	38.23	0.00	-11.79
HAT	97.10	0.00	-1.33	97.49	0.00	-0.42	71.23	0.00	-12.61	44.51	0.00	-5.69
SupSup	97.02	0.00	-1.41	97.15	0.00	-0.73	71.44	0.00	-12.40	43.22	0.00	-6.98
WŠN	97.16	0.00	-1.27	97.32	0.00	-0.59	72.84	0.00	-11.00	45.96	0.00	-4.24
DSN	98.24	0.01	-0.19	97.73	0.02	-0.18	75.17	0.02	-8.67	46.56	0.04	-3.64

TT 1 1 T C • C (1

- DSN consistently outperforms all baselines regarding ACC, BWT, and Trans(%) •
- DSN is the first to exceed 0 regarding BWT •

The accuracy performance of the first task in incremental learning

When new tasks arrive, DSN is the only one to perform better

on the first task

The accuracy performance during entire incremental learning

• DSN outperforms other

baselines during the entire

incremental learning process

The layer-wise neuron usage in incremental learning

• DSN prefers to reuse more

neurons from earlier tasks

when a new task arrives

Hypernetwork capacity in incremental learning varying different learning rates

Southwestern University of Finance and Economics (SWUFE) University of Electronic Science and Technology of China (UESTC)

Thank you!

Q&A

Xiaojun Shan xiaojunshan@std.uestc.edu.cn

Qiang Gao*, Xiaojun Shan*, Yuchen Zhang, Fan Zhou. the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)