

Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications

Xinyu Ma, Xu Chu*, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, Wenwu Zhu

Presenter: Xinyu Ma, Peking University 2023.11

Background: Why Graph Data Augmentation?

• Graph Neural Networks (GNNs) have shown promising capabilities in various graph-level classification tasks:

Molecular Property Prediction

Social Network Classification

- Yet GNNs still suffer from **data insufficiency** and **perturbations**
- Require the regularization of **Graph Data Augmentation** techniques:
 - Fortify GNNs against **potential noises and outliers** underlying **insufficient samples**
 - Enable more robust and representative feature learning

Challenges of Graph Data Augmentation

• Graphs are non-Euclidean data with distinctive properties:

- Require unique design to accommodate those properties
- GNNs map two intertwined yet complementary data spaces (i.e., graph signal and graph structure spaces) to an aligned representation space

 A good graph data augmentation method should consider augmenting both graph signal and graph structure spaces

Previous Works

- Existing research considers the augmentation in the graph signal space and structure space independently
 - ifMixup^[1] conducts Euclidean mixup in the graph signal space, yet fails to preserve key topologies of the original graphs.
 - *G*-Mixup^[2] realizes graph structure mixup based on the estimated graphons, yet **fails to assign semantically meaningful graph signals**.
- However, The graph signal and structure spaces are NOT isolated from each other, and there are strong entangling relations between them.

A joint modeling of the interaction between graph signal and structure spaces is essential for graph data augmentation

Our Insights & Ideas

 Design a novel graph mixup method considering the interaction of graph signal and graph structure spaces to augment the input space

 A proper metric space modeling distances between graphs w.r.t. both signals and structures

> ② Seek a 'midpoint' of two samples in this metric space to perform mixup of two samples

Methods

 A proper metric space modeling distances between graphs w.r.t. both signals and structures

- Fused Gromov-Wasserstein^[3] Metric Space:
 - We define an undirected attributed graph with a tuple (μ , X, A):

 $A \in S_n(\mathbb{R})$: symmetric structural relationship matrix (e.g., shortest path distance, adjacency, etc.)

Methods

 A proper metric space modeling distances between graphs w.r.t. both signals and structures

- Fused Gromov-Wasserstein^[3] Metric Space:
 - We define an undirected attributed graph with a tuple (μ, X, A)
 - Fused Gromov-Wasserstein metric is formulated as an optimal transport problem optimizing the coupling $\pi \in \Pi(\mu_1, \mu_2) \coloneqq \{\pi \in \mathbb{R}^{n_1 \times n_2}_+ \mid \pi \mathbf{1}_{n_2} = \mu_1, \pi^\top \mathbf{1}_{n_1} = \mu_2\}$ between nodes in a fused metric space considering the interaction of structure and signals at minimum alignment costs.

$$\operatorname{FGW}_{q}(G_{1},G_{2}) = \min_{\pi \in \Pi(\mu_{i},\mu_{j})} \sum_{i,j,k,l} \left((1-\alpha)d\left(\mathbf{x}_{1}^{(i)},\mathbf{x}_{2}^{(j)}\right)^{q} + \alpha \left| \mathbf{A}_{1}(i,k) - \mathbf{A}_{2}(j,l) \right|^{q} \right) \pi_{i,j}\pi_{k,l},$$
signal space metric structure space metric

Methods

② Seek a 'midpoint' of two samples in this metric space to perform mixup of two samples

• Seek a synthetic graph \tilde{G} at the 'midpoint' of source graphs G_1 and G_2

 $\arg\min_{\tilde{G}\in(\Delta_{\tilde{n}},\mathbb{R}^{\tilde{n}\times d},\mathbb{S}_{\tilde{n}}(\mathbb{R}))}\lambda \mathrm{FGW}(\tilde{G},G_{1}) + (1-\lambda)\mathrm{FGW}(\tilde{G},G_{2}),$

• Traditional numeric solutions suffer high computation complexity. We enhance the computational efficiency by conducting Mirror Descent with a relaxed projection to polytope constraints:

Alternately projecting to row and column marginal constraints instead of directly to the strict polytope constraint

Single-loop Algorithm
 Faster Convergence
 Ensuring Estimation Accuracy

Algorithm 2 FGWMixup_{*}: Accelerated FGWMixup 1: Input: $\tilde{\mu}, G_1 = (\mu_1, X_1, A_1), G_2 = (\mu_2, X_2, A_2)$ 2: **Optimizing:** $\tilde{X} \in \mathbb{R}^{\tilde{n} \times d}, \tilde{A} \in \mathbb{S}_{\tilde{n}}(\mathbb{R}), \pi_1 \in \Pi(\tilde{\mu}, \mu_1), \pi_2 \in \Pi(\tilde{\mu}, \mu_2).$ 3: for k in *outer iterations* and not converged do: $ilde{G}^{(k)} := (ilde{oldsymbol{\mu}}, ilde{oldsymbol{X}}^{(k)}, ilde{oldsymbol{A}}^{(k)})$ 4: $m{D}_1^{(k)} := \left(d(ilde{m{X}}^{(k)}[i], m{X}_1[j])
ight)_{ ilde{n} imes n_1}, m{D}_2^{(k)} := \left(d(ilde{m{X}}^{(k)}[i], m{X}_2[j])
ight)_{ ilde{n} imes n_2}$ 5: for *i* in {1, 2} do 6: while not convergence do: \triangleright Solve $\arg \min_{\boldsymbol{\pi}_{i}^{(k)}} \operatorname{FGW}(\tilde{G}^{(k)}, G_{i})$ 7: $\boldsymbol{\pi}_{i}^{(k)} \leftarrow \boldsymbol{\pi}_{i}^{(k)} \odot \exp\left(\gamma(4lpha \tilde{\boldsymbol{A}}^{(k)} \boldsymbol{\pi}_{i}^{(k)} \boldsymbol{A}_{i} - (1-lpha) \boldsymbol{D}_{i}^{(k)})
ight)$ 8: $\underbrace{ \begin{pmatrix} \boldsymbol{\pi}_{i}^{(k)} \leftarrow \operatorname{diag}(\tilde{\boldsymbol{\mu}}./\boldsymbol{\pi}_{i}^{(k)} \mathbf{1}_{\tilde{n}}) \boldsymbol{\pi}_{1}^{(k)} \\ \boldsymbol{\pi}_{i}^{(k)} \leftarrow \boldsymbol{\pi}_{i}^{(k)} \odot \exp\left(\gamma(4\alpha \tilde{\boldsymbol{A}}^{(k)} \boldsymbol{\pi}_{i}^{(k)} \boldsymbol{A}_{i} - (1-\alpha)\boldsymbol{D}_{i}^{(k)}) \right) }$ Bregman Pro-▷ Bregman Projection on row constraint 9: 10: $\left(\pi_i^{(k)} \leftarrow \pi_i^{(k)} \overline{\operatorname{diag}(\mu_i . / {\pi_i^{(k)}}^{^{\top}} \mathbf{1}_{n_i})}
ight)$ end while Bregman Projection on column constraint 11: 12: 13: end for Update $\tilde{A}^{(k+1)} \leftarrow \frac{1}{\tilde{u}\tilde{\mu}^{\top}} (\lambda \pi_1^{(k)} A_1 {\pi_1^{(k)}}^{\top} + (1-\lambda) {\pi_2^{(k)}} A_2 {\pi_2^{(k)}}^{\top})$ 14: Update $\tilde{X}^{(k+1)} \leftarrow \lambda \operatorname{diag}(1/\tilde{\mu}) \pi_1^{(k)} X_1 + (1-\lambda) \operatorname{diag}(1/\tilde{\mu}) \pi_2^{(k)} X_2$ 15: 16: end for 17: return $ilde{G}^{(k)}, y_{ ilde{G}} = \lambda y_{G_1} + (1-\lambda) y_{G_2}$

• Qualitative Analysis:

Solution Overall trident structure reserved in G_1 **Solution** Substructures from G_1 and G_2 are both adopted **Solution** Both topologically alike and highly consistent in node features (denoted with ID and colors)

• Enhance GNN Performance

• Experiments conducted on five datasets and four GNN backbones with various SOTA graph

data augmentation methods

		PROTEINS		NCI1		NCI109		IMDB-B		IMDB-M	
	Methods	vGIN	vGCN	vGIN	vGCN	vGIN	vGCN	vGIN	vGCN	vGIN	vGCN
Is	vanilla	74.93(3.02)	74.75(2.60)	76.98(1.87)	76.91(1.80)	75.70(1.85)	75.89(1.35)	71.30(4.96)	72.30(4.34)	49.00(2.64)	49.47(3.76)
	DropEdge	73.59(2.50)	74.48(4.18)	76.47(2.85)	76.16(2.04)	75.38(2.05)	75.77(1.55)	73.30(3.85)	73.30(3.29)	49.47(2.66)	49.40(3.52)
	DropNode	74.48(2.91)	75.11(3.00)	76.89(1.25)	77.42(1.71)	73.98(2.16)	75.45(1.90)	71.50(3.23)	73.20(5.58)	49.80(3.29)	50.00(3.41)
Ź	M-Mixup	74.40(3.00)	75.65(4.51)	76.45(3.39)	77.76(2.75)	75.41(2.78)	75.79(1.85)	72.20(4.83)	72.80(4.45)	49.13(3.25)	49.47(2.56)
MPI	ifMixup	74.76(3.71)	74.04(2.27)	76.16(1.78)	77.37(2.56)	76.13(1.87)	76.74(1.56)	72.50(3.98)	72.40(5.14)	49.07(3.16)	49.73(4.67)
	$\mathcal{G} ext{-Mixup}$	74.84(2.99)	74.57(2.88)	76.42(1.79)	77.79(1.88)	75.55(2.32)	76.38(1.79)	72.40(4.82)	72.20(6.45)	49.47(4.73)	49.60(3.90)
	FGWMixup	75.02(3.86)	76.01(3.19)	78.32(2.65)	78.37(2.40)	76.40(1.65)	76.79(1.81)	73.00(3.69)	73.40(5.12)	49.80(2.63)	50.80(4.06)
	$FGWMixup_*$	75.20(3.30)	75.20(3.03)	77.27(2.71)	78.47(1.74)	76.64(2.60)	76.52(1.59)	73.50(4.54)	74.00(2.90)	49.20(3.38)	50.47(5.44)
	Methods	Graphormer (GraphormerGD	Graphormer (GraphormerGD	Graphormer (GraphormerGE	Graphormer	GraphormerGD	Graphormer	GraphormerGD
Graphormers	vanilla	75.47(3.16)	76.01(2.02)	61.56(3.70)	77.49(2.01)	65.54(3.04)	74.99(1.23)	70.40(5.00)	71.50(4.20)	48.87(4.10)	47.47(2.98)
	DropEdge	75.20(4.02)	75.12(3.22)	63.07(3.21)	74.94(2.44)	66.73(3.50)	74.73(3.22)	71.10(5.65)	72.30(3.93)	49.60(4.09)	46.67(3.85)
	DropNode	75.20(2.13)	76.28(3.49)	64.96(2.18)	76.20(1.95)	63.73(3.46)	74.78(2.07)	71.60(5.18)	71.30(5.18)	48.47(4.08)	47.67(2.83)
	M-Mixup	75.11(3.78)	74.39(3.83)	62.31(3.48)	75.47(1.45)	66.54(2.70)	74.61(1.86)	71.10(4.83)	70.50(4.70)	49.67(4.25)	48.00(3.85)
	$\mathcal{G} ext{-Mixup}$	75.74(3.12)	74.85(3.52)	63.07(4.40)	76.06(3.12)	65.03(2.98)	74.90(2.04)	72.10(6.38)	71.10(5.01)	46.93(5.18)	46.80(4.41)
	FGWMixup	76.82(2.35)	77.18(3.48)	66.45(2.58)	78.20(1.88)	67.36(3.21)	76.01(3.04)	72.60(5.08)	72.40(4.48)	49.73(3.80)	48.87(4.03)
	$FGWMixup_*$	76.19(3.20)	76.46(3.41)	64.26(3.25)	76.62(3.06)	67.46(2.82)	75.45(1.80)	71.70(4.17)	71.90(4.35)	50.27(4.26)	48.53(2.95)

Enhance GNN Test-time Generalizability: Our methods consistently outperforms all SOTA augmentation methods under all settings

• Enhance GNN Performance

• Randomly corrupts 20/40/60% of training graph labels (i.e., switching to another random label)

Methods		IMDB-B		NCI1			
wiethous	20%	40%	60%	20%	40%	60%	
vanilla	70.00(5.16)	59.70(5.06)	47.90(4.30)	70.58(1.29)	61.95(2.19)	48.25(4.87)	
DropEdge	68.30(5.85)	59.40(5.00)	50.10(1.92)	69.51(2.27)	60.32(2.60)	49.61(1.28)	
M-Mixup	70.70(5.90)	59.70(5.87)	50.90(1.81)	71.53(2.75)	63.24(2.59)	48.66(3.02)	
\mathcal{G} -Mixup	67.50(4.52)	59.10(4.74)	49.40(2.87)	72.46(1.95)	63.26(4.39)	50.01(1.26)	
FGWMixup	70.10(4.39)	61.90(6.17)	50.80(3.19)	72.92(1.56)	62.99(1.35)	50.12(3.51)	
$FGWMixup_*$	70.80(3.97)	61.80(5.69)	51.00(1.54)	72.75(2.29)	63.55(2.60)	50.02(3.38)	

Solution Enhance GNN Robustness: Resist label corruptions under various perturbation rates

- Computational Efficiency Improvements:
 - Mixup clock time comparisons between FGWMixup using traditional solution and our accelerated version (FGWMixup*):

Avg. Mixup Time (s) / Fold								
Datasets	PROTEINS	NCI1	NCI109	IMDB-B	IMDB-M			
FGWMixup FGWMixup _* Speedup	802.24 394.57 2.03×	1711.45 637.41 2.67×	1747.24 608.61 2.74×	296.62 85.69 3.46×	212.53 74.53 2.85×			

W Higher mixup efficiency: Up to 3.46× efficiency improvements

Thanks! Q&A

Presenter: Xinyu Ma, Peking University E-mail: maxinyu@pku.edu.cn