Adaptive Algorithms for Relaxed Pareto Set Identification

Cyrille Kone, Emilie Kaufmann, Laura Richert Inria/CNRS/Univ-Lille/Univ-Bordeaux

LL Université de Lille

Ea science pour la santé From science to health

We are given *K D*-variates distributions (or arms) ν_1, \ldots, ν_K with means (resp.) $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$

+ *i* is dominated by *j* (or $\mu_i \prec \mu_j$) if: $\forall d \in [D], \ \mu_i^d < \mu_j^d$

+ define \mathcal{S}^{\star} the set of non-dominated (or Pareto-optimal) arms

We are given *K D*-variates distributions (or arms) ν_1, \ldots, ν_K with means (resp.) $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$

+ *i* is dominated by *j* (or $\mu_i \prec \mu_j$) if: $\forall d \in [D], \ \mu_i^d < \mu_j^d$

+ define S^* the set of non-dominated (or Pareto-optimal) arms

<u>Goal</u>: Given δ output $\widehat{S}_{\tau_{\delta}}$ s.t $\mathbb{P}(\tau_{\delta} < \infty$ and $\mathcal{S}^{\star} \neq \widehat{S}_{\tau_{\delta}}) \leq \delta$

We are given *K D*-variates distributions (or arms) ν_1, \ldots, ν_K with means (resp.) $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$

+ *i* is dominated by *j* (or $\mu_i \prec \mu_j$) if: $\forall d \in [D], \ \mu_i^d < \mu_j^d$

+ define S^* the set of non-dominated (or Pareto-optimal) arms <u>Goal</u>: Given δ output $\widehat{S}_{\tau_{\delta}}$ s.t $\mathbb{P}(\tau_{\delta} < \infty$ and $S^* \neq \widehat{S}_{\tau_{\delta}}) \leq \delta$

 ${ig Q}$ Possibly large sample complexity so we study relaxations

- + PSI-k: find k Pareto-optimal arms
- + (ε₁)-PSI (Auer et al. 2016): output

 S ⊃ S^{*} and *S* could contain some green points
- + $(\varepsilon_1, \varepsilon_2)$ -PSI: we are allowed to return one arm in each cluster



We are given *K D*-variates distributions (or arms) ν_1, \ldots, ν_K with means (resp.) $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$

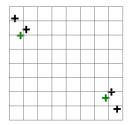
+ *i* is dominated by *j* (or $\mu_i \prec \mu_j$) if: $\forall d \in [D], \ \mu_i^d < \mu_j^d$

+ define S^* the set of non-dominated (or Pareto-optimal) arms <u>Goal</u>: Given δ output $\widehat{S}_{\tau_{\delta}}$ s.t $\mathbb{P}(\tau_{\delta} < \infty$ and $S^* \neq \widehat{S}_{\tau_{\delta}}) \leq \delta$

 ${ig Q}$ Possibly large sample complexity so we study relaxations

- + PSI-k: find k Pareto-optimal arms
- + (ε₁)-PSI (Auer et al. 2016): output

 S ⊃ S^{*} and *S* could contain some green points
- + $(\varepsilon_1, \varepsilon_2)$ -PSI: we are allowed to return one arm in each cluster



<u>**Our contribution**</u>: a single sampling strategy to tackle the three relaxations simultaneously.

Adaptive Pareto Exploration

Set $\Omega := [K]^2 \times [D]$ and define

+ confidence intervals $[L^{d}_{i,j}(t,\delta), U^{d}_{i,j}(t,\delta)]$ s.t

 $\mathbb{P}\left(\forall t \geq 1, \ \forall (i, j, d) \in \Omega, \ (\mu_i^d - \mu_j^d) \in \left[L_{i, j}^d(t, \delta), U_{i, j}^d(t, \delta)\right]\right) \geq 1 - \delta$

+ lower/upper CB on the "distance" between two arms *i*, *j*

$$\mathbf{M}^{-}(i,j,t) := \max_{d} L^{d}_{i,j}(t,\delta) \text{ and } \mathbf{M}^{+}(i,j,t) := \max_{d} U^{d}_{i,j}(t,\delta)$$

+ nearly optimal arms at time t

$$\mathsf{OPT}^{\varepsilon_1}(t) := \left\{ i \in [K] : \forall j \neq i, \mathbb{M}^-(i, j, t) + \varepsilon_1 > 0 \right\}$$

Adaptive Pareto Exploration

Set $\Omega := [K]^2 \times [D]$ and define

+ confidence intervals $[L^{d}_{i,j}(t,\delta), U^{d}_{i,j}(t,\delta)]$ s.t

 $\mathbb{P}\left(\forall t \geq 1, \ \forall (i, j, d) \in \Omega, \ (\mu_i^d - \mu_j^d) \in \left[L_{i, j}^d(t, \delta), U_{i, j}^d(t, \delta)\right]\right) \geq 1 - \delta$

+ lower/upper CB on the "distance" between two arms *i*, *j*

$$\mathbf{M}^{-}(i,j,t) := \max_{d} L^{d}_{i,j}(t,\delta) \text{ and } \mathbf{M}^{+}(i,j,t) := \max_{d} U^{d}_{i,j}(t,\delta)$$

+ nearly optimal arms at time t

$$\mathsf{OPT}^{\varepsilon_1}(t) := \left\{ i \in [K] : \forall j \neq i, \mathbf{M}^-(i, j, t) + \varepsilon_1 > 0 \right\}$$

Sampling rule: pull the least explored arm among b_t and c_t :

$$\mathbf{b}_{\mathbf{t}} := \underset{i \in [K] \setminus \text{OPT}^{\varepsilon_1}(t)}{\operatorname{argmin}} \underset{j \neq i}{\min} \mathbf{M}^+(i, j, t)$$

$$\mathbf{c}_{\mathbf{t}} := \operatorname{argmin} \mathbf{M}^-(\mathbf{b}, i, t)$$

$$\mathbf{c_t} := \operatorname*{argmin}_{j \neq b_t} \mathrm{M}^-(b_t, j, t)$$

Adaptive Pareto Exploration

Set $\Omega := [K]^2 \times [D]$ and define

+ confidence intervals $[L^{d}_{i,j}(t,\delta), U^{d}_{i,j}(t,\delta)]$ s.t

 $\mathbb{P}\left(\forall t \geq 1, \ \forall (i, j, d) \in \Omega, \ (\mu_i^d - \mu_j^d) \in \left[L_{i, j}^d(t, \delta), U_{i, j}^d(t, \delta)\right]\right) \geq 1 - \delta$

+ lower/upper CB on the "distance" between two arms *i*, *j*

$$\mathbf{M}^{-}(i,j,t) := \max_{d} L^{d}_{i,j}(t,\delta) \text{ and } \mathbf{M}^{+}(i,j,t) := \max_{d} U^{d}_{i,j}(t,\delta)$$

+ nearly optimal arms at time t

$$\operatorname{OPT}^{\varepsilon_1}(t) := \left\{ i \in [K] : \forall j \neq i, \mathbf{M}^-(i, j, t) + \varepsilon_1 > 0 \right\}$$

Sampling rule: pull the least explored arm among b_t and c_t :

$$\begin{aligned} \mathbf{b_t} &:= \underset{i \in [K] \setminus \mathrm{OPT}^{\varepsilon_1}(t)}{\operatorname{argmin}} \mathbf{M}^+(i, j, t), \\ \mathbf{c_t} &:= \underset{j \neq b_t}{\operatorname{argmin}} \mathbf{M}^-(b_t, j, t) \\ \mathbf{b}_t \text{ is the "most likely to be Pareto-optimal" in } [K] \setminus \mathrm{OPT}^{\varepsilon_1}(t) \\ \mathbf{c}_t \text{ is the "most likely to be dominating (or close to)" } b_t \end{aligned}$$

Stopping and Recommendation

.

Let for all
$$i \in [K]$$
, ε_1
 $g_i(t) := \max_{j \neq i} [-\mathbf{M}^+(i, j, t)] \text{ and } h_i^{\varepsilon_1}(t) := \min_{j \neq i} \mathbf{M}^-(i, j, t) + \varepsilon_1$

 $\label{eq:giff} \ensuremath{\underline{Q}}$ if $g_i(t) > 0$ then *i* is not Pareto-optimal (w.h.p) $\ensuremath{\underline{Q}}$ if $h_i^{\varepsilon_1}(t) > 0$ then *i* is nearly Pareto-optimal (w.h.p) Introduce

$$Z_1^{\varepsilon_1}(t) := \min_{i \in \mathcal{S}(t)} h_i^{\varepsilon_1}(t) \text{ and } Z_2^{\varepsilon_1}(t) := \min_{i \in \mathcal{S}(t)^c} \max(g_i(t), h_i^{\varepsilon_1}(t))$$

and let S(t) be the current empirical Pareto set

Stopping and Recommendation

Let for all
$$i \in [K]$$
, ε_1
 $g_i(t) := \max_{j \neq i} [-\mathbf{M}^+(i, j, t)] \text{ and } h_i^{\varepsilon_1}(t) := \min_{j \neq i} \mathbf{M}^-(i, j, t) + \varepsilon_1$

 $\label{eq:gift} \ensuremath{\underline{Q}}$ if $g_i(t) > 0$ then *i* is not Pareto-optimal (w.h.p) $\ensuremath{\underline{Q}}$ if $h_i^{\varepsilon_1}(t) > 0$ then *i* is nearly Pareto-optimal (w.h.p) Introduce

$$Z_1^{\varepsilon_1}(t) := \min_{i \in \mathcal{S}(t)} h_i^{\varepsilon_1}(t) \text{ and } Z_2^{\varepsilon_1}(t) := \min_{i \in \mathcal{S}(t)^c} \max(g_i(t), h_i^{\varepsilon_1}(t))$$

and let S(t) be the current empirical Pareto set

	Stopping condition	Recommendation	Objective
$ au_{\varepsilon_1}$	$Z_1^{\varepsilon_1}(t) > 0 \land Z_2^{\varepsilon_1}(t) > 0$	$S(\tau_{\varepsilon_1}) \cup W(\tau_{\varepsilon_1})$	ε_1 -PSI
$\tau_{\varepsilon_1,\varepsilon_2}$	$Z_1^{\varepsilon_1,\varepsilon_2}(t) > 0 \ \land Z_2^{\varepsilon_1,\varepsilon_2}(t) > 0$	$OPT^{\varepsilon_1}(\tau_{\varepsilon_1,\varepsilon_2})$	$(\varepsilon_1, \varepsilon_2)$ -PSI
τ^k	$ \operatorname{OPT}^{\varepsilon_1}(t) \ge k$	$\operatorname{OPT}^{\varepsilon_1}(\tau^k)$	ε_1 -PSI- k

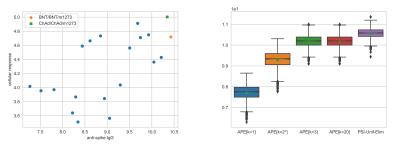
with $W(t) := \{i \in S(\tau_{\varepsilon_1})^c : \nexists j \neq i : \mathbf{M}^+(i, j, \tau_{\varepsilon_1}) < 0\}$

Experiments

We benchmarked our algorithms against the state-of-the art on real-world and synthetic datasets

Real-world scenario (COV-BOOST trial (Munro et al. 2021)):

- + Arms: 20 covid vaccines
- Measures: 3 immunogenicity indicators (2 indicators of antibody and 1 of cellular response)



 \bigcirc *k*-relaxation reduces the sample complexity

Conclusion and Future Work

- + We proposed APE, an adaptive sampling rule that can be coupled with different stopping rules
- + We proved the reductions in sample complexity brought by the relaxations
- + We showcased the good performance of our algorithms compared to the state-of-the-art

Future working directions include

- + Identify the Pareto set given a small budget
- + Use component-wise slack $\boldsymbol{\varepsilon} := (\varepsilon^1, \dots, \varepsilon^D)$