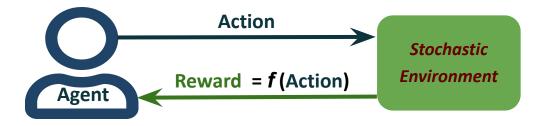
Exploiting Correlated Auxiliary Feedback in Parameterized Bandits

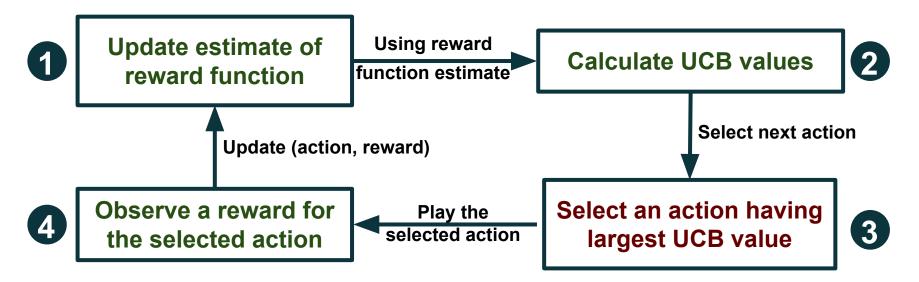
Arun Verma, Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low


National University of Singapore NeurIPS 2023

Parameterized Bandits

In each round, an agent (or decision-maker) selects the next action.

- Environment generates a stochastic reward, which is an unknown function (*f*) of the features of the selected action.
- > Here, function *f* can be a non-linear, complex, and black-box function.


How to select the next action that maximizes the reward?

UCB-based algorithm for Parameterized Bandits

To select the next action, the UCB-based bandit algorithm

3

- uses a suitable function estimator to model the unknown reward function (e.g., Gaussian process to model a non-linear function) and
- selects an action that maximizes the Upper Confidence Bound (UCB) (using the estimated function) to balance exploration and exploitation.

Auxiliary Feedback in Parameterized Bandits

Online food delivery platform:

- Different restaurants can be recommended to a user.
 Goal: Recommend a restaurant that has the highest user rating.
- Here, the *food delivery time* can be **auxiliary feedback** as it influences the user's rating.

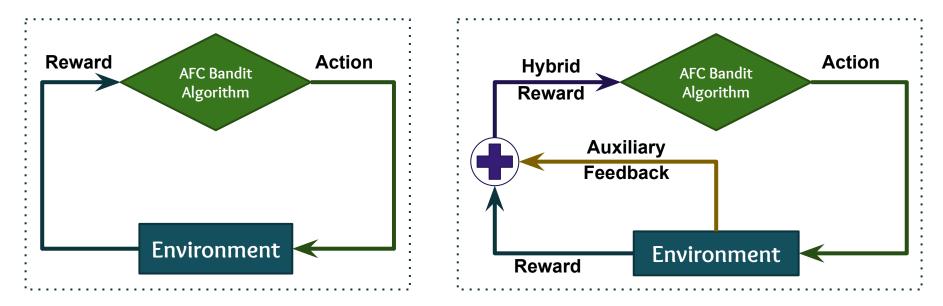
Other similar problems:

- Showing best online sellers to users by e-commerce platform.
- Selecting the best cab for the rider by online cab aggregator.

How to use the Correlated Auxiliary Feedback to learn the best action quickly?

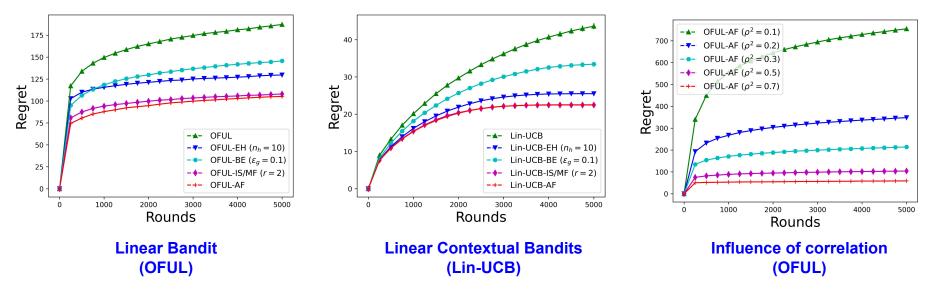
Control Variates

- \succ Let μ be the unknown quantity that needs to be estimated.
- ▶ y be an unbiased estimator of μ , i.e., $\mathbb{E}[y] = \mu$.
- > Any random variable w with known mean ω is a control variate if it is correlated with y.


For any β , define a new unbiased estimator as:

$$z = y + \beta(\omega - w).$$

For $\beta = \frac{\text{Cov}(y, w)}{\text{Var}(w)}$, $\text{Var}(z) = (1 - \rho^2)\text{Var}(y)$ is minimum, where ρ is the correlation coefficient between y and w.


Using Auxiliary Feedback in Bandit Algorithm

- Hybrid rewards: combination of reward and its auxiliary feedback, which leads to an unbiased reward estimator with a smaller variance than using only rewards.
- Auxiliary Feedback Compatible (AFC) bandit algorithm: Any bandit algorithm that can use hybrid rewards instead of only observed rewards.

Results

- > Let ρ be the correlation coefficient between reward and its auxiliary feedback.
- > Instantaneous regret of any AFC bandit algorithm using hybrid rewards is smaller by a factor $O((1-\rho^2)^{\frac{1}{2}})$ compared to when it only uses observed rewards.

