

Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature Connectivity

Zhanpeng Zhou¹, Yongyi Yang², Xiaojiang Yang¹, Junchi Yan^{1*}, Wei Hu² ¹Shanghai Jiao Tong University, ²University of Michigan

*Corresponding author

Background: Linear Mode Connectivity

Linear Mode Connectivity (LMC)

Given dataset *D* and two modes θ_A , θ_B that $\operatorname{Err}_D(\theta_A) = \operatorname{Err}_D(\theta_B)^*$, two mode θ_A and θ_B satisfy the *linear mode connectivity* if

 $\forall \alpha \in [0, 1], \operatorname{Err}_{D}(\alpha \theta_{A} + (1 - \alpha) \theta_{B}) \approx \operatorname{Err}_{D}(\theta_{A})$

*Err_D($\boldsymbol{\theta}$) denotes the classification error of the network $f(\boldsymbol{\theta}; \cdot)$ on the dataset D.

Fig. 1: Illustration of spawning method and LMC [1].

Frankle et al. [1] observed LMC for networks that are jointly trained for a short time before independent training (**spawning method**).

[1] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and the lottery ticket hypothesis.

Background: Permutation Method

Permutation Invariance.

Given an *L*-layer MLP *f*, we can permute the neurons of the MLP in each layer $\ell \in [L]$ without changing its functionality ($\pi = \{P^{(\ell)}\}_{\ell \in [L]}$ are permutation matrices^{*}):

$$f(\boldsymbol{\theta}; \cdot) = f(\boldsymbol{\theta}'; \cdot), \text{ where } \boldsymbol{\theta} = \left\{ \boldsymbol{W}^{(\ell)} \right\}_{\ell \in [L]}, \boldsymbol{\theta}' = \left\{ \boldsymbol{W}'^{(\ell)} \right\}_{\ell \in [L]}$$
$$\forall \ell \in [L], \boldsymbol{W}'^{(\ell)} = \boldsymbol{P}^{(\ell)} \boldsymbol{W}^{(\ell)}, \boldsymbol{b}^{(\ell)} = \boldsymbol{P}^{(\ell)} \boldsymbol{b}^{(\ell)}, \boldsymbol{W}'^{(\ell+1)} = \boldsymbol{W}^{(\ell+1)} \boldsymbol{P}^{(\ell)}$$

*Note that $P^{(0)}$ and $P^{(L)}$ are all fixed to be identity matrix.

Independently trained networks can be *linearly connected* when considering *permutation invariance* (**permutation methods**)[2, 3].

[2] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in linear mode connectivity of neural networks.[3] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo permutation symmetries.

Background: Permutation Method

Ainsworth et al. [3] proposed *weight matching* and *activation matching* to achieve LMC:

weight matching*:
$$\min_{\pi} \sum_{\ell=1}^{L} \left\| W_A^{(\ell)} - P^{(\ell)} W_B^{(\ell)} P^{(\ell-1)^{\mathsf{T}}} \right\|_F^2$$

Activation matching*:
$$\min_{\pi} \sum_{\ell=1}^{L} \left\| H_A^{(\ell)} - P^{(\ell)} H_B^{(\ell)} \right\|_F^2$$

*We denote ℓ -th layer feature as $H^{(\ell)}$ over the dataset D. Subscript $\{A, B\}$ corresponds to modes θ_A, θ_B .

Fig. 2: Illustration of permutation [2].

[3] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo permutation symmetries.

Motivation

what happens to the internal features when we linearly interpolate the weights of two trained networks?

 $f^{(\ell)}(\boldsymbol{\theta})$ denotes ℓ -th layer feature of the network $f(\boldsymbol{\theta}; \cdot)$ over the dataset D.

Layerwise Linear Feature Connectivity

Layerwise Linear Feature Connectivity (LLFC)

Given dataset *D* and two modes θ_A , θ_B of an *L*-layer neural network *f*, the modes θ_A and θ_B are *layerwise linearly feature connected* if:

 $\forall \ell \in [L], \forall \alpha \in [0,1], \exists c > 0, s.t., cf^{(\ell)}(\alpha \theta_A + (1-\alpha)\theta_B) = \alpha f^{(\ell)}(\theta_A) + (1-\alpha)f^{(\ell)}(\theta_B).$

Layerwise Linear Feature Connectivity

LLFC always co-occurs with LMC in practice ResNet20 (32 x) on CIFAR-10 (Weight Matching) $cosine(x_i)$] 1.0 0.5 $E_D[1$ 0 0 Block 2-1 Block 3-2 Block 1-1 Block 1-2 Block 1-3 Block 2-2 Block 2-3 Block 3-1 Block 3-3 FC $1 - \operatorname{cosine}_{A,B}$ $1 - \cos ine_{0.25}$ $1 - \cos ine_{0.50}$ $1 - \cos ine_{0.75}$

Fig. 3: Comparison of $E_D[1 - \text{cosine}_{\alpha}(x_i)]^*$ and $E_D[1 - \text{cosine}_{A,B}(x_i)]^*$, $\alpha \in \{.25, .5, .75\}$.

Lemma (LLFC implies LMC)

Two modes $\boldsymbol{\theta}_A$, $\boldsymbol{\theta}_B$ satisfy LLFC over dataset D and $\max\{\operatorname{Err}_D(\boldsymbol{\theta}_A), \operatorname{Err}_D(\boldsymbol{\theta}_B)\} \leq \epsilon$, then $\forall \alpha \in [0, 1], \operatorname{Err}_D(\alpha \boldsymbol{\theta}_A + (1 - \alpha) \boldsymbol{\theta}_B) \leq 2\epsilon$.

 $^{*} \text{cosine}_{\alpha}(\boldsymbol{x}_{i}) = \cos\langle f^{(\ell)}(\alpha \theta_{A} + (1 - \alpha)\theta_{B}; \boldsymbol{x}_{i}), \alpha f^{(\ell)}(\theta_{A}; \boldsymbol{x}_{i}) + (1 - \alpha)f^{(\ell)}(\theta_{B}; \boldsymbol{x}_{i}) \rangle \text{ and } \text{cosine}_{A,B}(\boldsymbol{x}_{i}) = \cos\langle f^{(\ell)}(\theta_{A}; \boldsymbol{x}_{i}), f^{(\ell)}(\theta_{B}; \boldsymbol{x}_{i}) \rangle$

Why LLFC Emerges?

Two simple conditions that leads to LLFC.

Condition I: Weak Additivity for ReLU Activations

Given dataset D, the modes $\boldsymbol{\theta}_A$ and $\boldsymbol{\theta}_B$ satisfy weak additivity for ReLU activations if $\forall \ell \in [L], \forall \alpha \in [0,1], \sigma\left(\alpha \widetilde{\boldsymbol{H}}_A^{(\ell)} + (1-\alpha)\widetilde{\boldsymbol{H}}_B^{(\ell)}\right) = \alpha \sigma\left(\widetilde{\boldsymbol{H}}_A^{(\ell)}\right) + (1-\alpha)\sigma\left(\widetilde{\boldsymbol{H}}_B^{(\ell)}\right).^*$

*We denote ℓ -th layer pre-activations as $\widetilde{H}^{(\ell)}$ over the dataset D and ReLU activation as $\sigma(\cdot)$.

Condition II: Commutativity

Given dataset D, the modes $\boldsymbol{\theta}_A$ and $\boldsymbol{\theta}_B$ satisfy *commutativity* if $\forall \ell \in [L], \boldsymbol{W}_A^{(\ell)} \boldsymbol{H}_A^{(\ell-1)} + \boldsymbol{W}_B^{(\ell)} \boldsymbol{H}_B^{(\ell-1)} = \boldsymbol{W}_B^{(\ell)} \boldsymbol{H}_A^{(\ell-1)} + \boldsymbol{W}_A^{(\ell)} \boldsymbol{H}_B^{(\ell-1)}.$

Why LLFC Emerges?

Theorem (Condition I and II imply LLFC)

Given dataset D, if two modes θ_A and θ_B satisfy weak additivity for ReLU activations and commutativity, then

$$\forall \ell \in [L], \forall \alpha \in [0,1], f^{(\ell)}(\alpha \boldsymbol{\theta}_A + (1-\alpha)\boldsymbol{\theta}_B) = \alpha f^{(\ell)}(\boldsymbol{\theta}_A) + (1-\alpha)f^{(\ell)}(\boldsymbol{\theta}_B).^*$$

Weak additivity for ReLU activations and *commutativity* are verified empirical for modes that satisfy LMC/LLFC.

Justification of Permutation Method

Given a mode θ_A and a permuted mode $\theta'_B = \pi(\theta_B)$ that satisfy LLFC, the *commutativity* is satisfied:

$$\forall \ell \in [L], W_A^{(\ell)} H_A^{(\ell-1)} + W_B^{(\ell)} H_B^{(\ell-1)} = W_B^{(\ell)} H_A^{(\ell-1)} + W_A^{(\ell)} H_B^{(\ell-1)}$$
(1)

Rewritten as:

$$\forall \ell \in [L], \left(\boldsymbol{W}_{A}^{(\ell)} - \boldsymbol{P}^{(\ell)} \boldsymbol{W}_{B}^{(\ell)} \boldsymbol{P}^{(\ell-1)^{\mathsf{T}}} \right) \left(\boldsymbol{H}_{A}^{(\ell-1)} - \boldsymbol{P}^{(\ell)} \boldsymbol{H}_{B}^{(\ell-1)} \right) = 0 \qquad (2)$$

Connection to permutation methods

weight matching:
$$\min_{\pi} \sum_{\ell=1}^{L} \left\| W_{A}^{(\ell)} - P^{(\ell)} W_{B}^{(\ell)} P^{(\ell-1)^{\mathsf{T}}} \right\|_{F}^{2}$$

Activation matching:
$$\min_{\pi} \sum_{\ell=1}^{L} \left\| H_{A}^{(\ell)} - P^{(\ell)} H_{B}^{(\ell)} \right\|_{F}^{2}$$

The two objectives correspond to the two factors of above equation.

Conclusion

Conclusion

- Identify Layerwise Linear Feature Connectivity (LLFC)
- Investigate the underlying contributing factors to LLFC
- Obtain novel insights into permutation methods

Future Directions

- Feature averaging methods
- Find a permutation directly enforcing the commutativity property