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Highlights

▶ Nonlinear GCS: In generative compressed sensing (GCS) we seek
to recover a signal x that lies in a bounded k-input L-Lipschitz
generative models G(·) : Bk2(r) → Rn. We deal with a nonlinear
model yi = fi(a

⊤
i x) with possibly discontinuous/unknown fi, which

captures 1-bit/multi-bit (dithered) quantization models and single
index model.

▶ A Uniform Recovery Framework: We build a unified framework to
establish uniform recovery guarantee for generalized Lasso.

▶ Near-Optimal Rate: Our main theorem shows that typically
O(kϵ2 logP (L)) (P (L) is a polynomial on L) measurements suffice for
uniform recovery of all x ∈ Range(G) up to ϵ-ℓ2-error, improving on
(Genzel and Stollenwerk, FOCM, 2023) for classical compressed
sensing (e.g., with sparse prior).

Problem Setup

▶ Nonlinear GCS model: (Assump. 1) G : Bk2(r) → Rn is L-Lipschitz
continuous, we observe yi = fi(a

⊤x), i = 1, ...,m with a ∼ N (0, In).

▶ Discontinuous fi: (Assump. 2) We handle possibly unknwon fi
with countably infinite jump discontinuities that is piece-wisely
Lipschitz continuous, including (but far beyond) various quantization
models.

▶ Generalized Lasso: We achieve uniform recovery via

x̂ = arg min
1

2
∥y −Ax∥2, s.t. x ∈ T · K (1)

where K = G(Bk2(r)), T is a rescaling factor (to be chosen).

Technical Ingredients Needed For Uniform Recovery

▶ Lipschitz Approximation: (Assump. 3)
▷ We handle discontinuous fi by constructing its Lipschitz

approximation fi,β
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Figure 1:(Left): fi and its approximation fi,0.5; (Right): approximation error εi,0.5, |εi,0.5|.

▷ We define ξi,β(a) = fi,β(a)− Ta, εi,β(a) = fi,β(a)− fi(a) and require
the bounds supx∈K ∥ξi,β(a⊤x)∥ψ2

≤ A
(1)
g and

supx∈K ∥εi,β(a⊤x)∥ψ2
≤ A

(2)
g .

▷ We also require bounds on supx∈K |ξi,β(a⊤x)| and supx∈K |εi,β(a⊤x)|,
but they can be crude ones and totally unproblematic.

▶ Small Mismatch: (Assump. 4)
▷ The mismatch associated with the nonlinearity fi, defined as
ρ(x) = ∥E[fi(a⊤i x)]− Tx∥2

▷ The mismatch induced by the Lipschitz approximation fi,β, defined
as µβ(x) = P (a⊤x ∈ Dfi + [−β

2 ,
β
2 ]), where Dfi is the set of

discontinuities of fi.
▷ We require supx∈K ρ(x) and supx∈K

√
µβ(x) to be O((A(1)

g +A
(2)
g )

√
k
m)

Master Theorem: Uniform Recovery with Sharp Rate

▶ Theorem 1 (Main Thm.): Under Assump. 1-4, given any ϵ ∈ (0, 1),
if m ≳ (A

(1)
g + A

(2)
g )kϵ2P (L), then w.h.p. on a single draw of (ai, fi)mi=1,

we have ∥x̂− Tx∥2 ≤ ϵ for all x ∈ K, where x̂ is as per (1).
▶ Implications: We check Assump. 1-4 for specific models to get the

uniform sharp ℓ2 error rate Õ(
√

k logP (L)
m ):

▷ 1-bit GCS: fi(·) = sign(·), recovering result from (Liu and Scarlett,
NeurIPS, 2020) without using local embedding property

▷ 1-bit Dithered GCS: fi(·) = sign(· + τi) with uniform dither τi,
yielding more general results with guarantee comparable to (Qiu
et al., ICML, 2020)

▷ Lipschitz-continuous SIM: fi(·) is possibly unknown, random,
and Lipschitz continuous, improving result from (Liu and Scarlett,
NeurIPS, 2020) without using local embedding property

▷ Multi-bit Dithered GCS: fi(·) = Qδ(· + τ ) with uniform dither τi,
yielding new result not available in the literature.

Prove Sharp Rate by Tighter Concentration Inequality

▶ Technical Challenges:
▷ Compared to non-uniform guarantee, proving a uniform guarantee

is much more challenging. In particular, we need to bound the
product process taking the form

sup
x∈X

sup
v∈V

[
h(a⊤i x)a

⊤
i v − E

(
h(a⊤i x)a

⊤
i v

)]
(2)

▷ By Lipschitz approximation, we manage to render h(·) Lipschitz
continuous.

▶ The key to get sharp rate:
▷ It’s natural to use the concentration inequality due to (Mendelson,

2016) to bound (2), but this in general does not yield a sharp rate
but a rate of m−1/4 instead, as per (Genzel and Stollenwerk,
FOCM, 2023)

▷ Observe that in the setting of GCS, X and V in (2) both possess
low metric entropy. By covering argument, we develop a
concentration inequality for product process that yields essentially
tighter bound in such setting.

▶ Theorem 2: (Tighter Bound on (2), informal and simplified) Let
H (X , r) = logN (X , r) be the metric entropy. Suppose that H (X , r)
and H (V , r) only logarithmically depend on r, then if
∥h(a⊤i x)∥ψ2

≤ A1, ∥a⊤i ∥ψ2
≤ A2, then w.h.p. we can bound (2) as

A1A2

√
H (X ,r1)+H (V ,r2)

m . (We omit r1, r2 since they have logarithmic
impact on the bound)

Numerical Results: Recovering Multiple Signals With One Design

▶ Reconstructed images and quantitative results of the MNIST
dataset for uniformly quantized CS with dithering measurements.
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