A Unified Framework for Uniform Signal Recovery in Nonlinear Generative Compressed Sensing

Junren Chen, Jonathan Scarlett, Michael K. Ng, Zhaoqiang Liu

HKU, NUS, HKBU, UESTC

Highlights

- ▶ Nonlinear GCS: In generative compressed sensing (GCS) we seek to recover a signal **x** that lies in a bounded *k*-input *L*-Lipschitz generative models $G(\cdot) : \mathbb{B}_2^k(r) \to \mathbb{R}^n$. We deal with a nonlinear model $y_i = f_i(\mathbf{a}_i^\top \mathbf{x})$ with possibly discontinuous/unknown f_i , which captures 1-bit/multi-bit (dithered) quantization models and single index model.
- A Uniform Recovery Framework: We build a unified framework to

Master Theorem: Uniform Recovery with Sharp Rate

- ► Theorem 1 (Main Thm.): Under Assump. 1-4, given any $\epsilon \in (0, 1)$, if $m \gtrsim (A_g^{(1)} + A_g^{(2)}) \frac{k}{\epsilon^2} P(L)$, then w.h.p. on a single draw of $(\mathbf{a}_i, f_i)_{i=1}^m$, we have $\|\hat{\mathbf{x}} - T\mathbf{x}\|_2 \leq \epsilon$ for all $\mathbf{x} \in \mathcal{K}$, where $\hat{\mathbf{x}}$ is as per (1).
- ► Implications: We check Assump. 1-4 for specific models to get the uniform sharp ℓ_2 error rate $\tilde{O}(\sqrt{\frac{k \log P(L)}{m}})$:
- ▷ **1-bit GCS:** $f_i(\cdot) = \text{sign}(\cdot)$, recovering result from (Liu and Scarlett, NeurIPS, 2020) without using local embedding property

establish uniform recovery guarantee for generalized Lasso.

▶ Near-Optimal Rate: Our main theorem shows that typically $O(\frac{k}{\epsilon^2} \log P(L))$ (P(L) is a polynomial on L) measurements suffice for uniform recovery of all $\mathbf{x} \in \text{Range}(G)$ up to $\epsilon - \ell_2$ -error, improving on (Genzel and Stollenwerk, FOCM, 2023) for classical compressed sensing (e.g., with sparse prior).

Problem Setup

- ► Nonlinear GCS model: (Assump. 1) $G : \mathbb{B}_2^k(r) \to \mathbb{R}^n$ is *L*-Lipschitz continuous, we observe $y_i = f_i(\mathbf{a}^\top \mathbf{x}), i = 1, ..., m$ with $\mathbf{a} \sim \mathcal{N}(0, \mathbf{I}_n)$.
- Discontinuous f_i: (Assump. 2) We handle possibly unknwon f_i with countably infinite jump discontinuities that is piece-wisely Lipschitz continuous, including (but far beyond) various quantization models.
- Generalized Lasso: We achieve uniform recovery via

 $\hat{\mathbf{x}} = \arg\min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2, \text{ s.t. } \mathbf{x} \in T \cdot \mathcal{K}$ (1)

where $\mathcal{K} = G(\mathbb{B}_2^k(r))$, *T* is a rescaling factor (to be chosen).

- ▷ **1-bit Dithered GCS:** $f_i(\cdot) = \text{sign}(\cdot + \tau_i)$ with uniform dither τ_i , yielding more general results with guarantee comparable to (Qiu et al., ICML, 2020)
- ▷ **Lipschitz-continuous SIM:** $f_i(\cdot)$ is possibly unknown, random, and Lipschitz continuous, improving result from (Liu and Scarlett, NeurIPS, 2020) without using local embedding property
- ▷ Multi-bit Dithered GCS: $f_i(\cdot) = Q_\delta(\cdot + \tau)$ with uniform dither τ_i , yielding new result not available in the literature.

Prove Sharp Rate by Tighter Concentration Inequality

Technical Challenges:

Compared to non-uniform guarantee, proving a uniform guarantee is much more challenging. In particular, we need to bound the product process taking the form

 $\sup_{\mathbf{x}\in\mathcal{X}}\sup_{\boldsymbol{v}\in\mathcal{V}}\left[h(\mathbf{a}_{i}^{\top}\mathbf{x})\mathbf{a}_{i}^{\top}\boldsymbol{v}-\mathbb{E}\left(h(\mathbf{a}_{i}^{\top}\mathbf{x})\mathbf{a}_{i}^{\top}\boldsymbol{v}\right)\right]$ (2)

> By Lipschitz approximation, we manage to render $h(\cdot)$ Lipschitz continuous.

The key to get sharp rate:

It's natural to use the concentration inequality due to (Mendelson, 2016) to bound (2), but this in general does not yield a sharp rate but a rate of m^{-1/4} instead, as per (Genzel and Stollenwerk, FOCM, 2023)
Observe that in the setting of GCS, X and V in (2) both possess low metric entropy. By covering argument, we develop a concentration inequality for product process that yields essentially tighter bound in such setting.
Theorem 2: (Tighter Bound on (2), informal and simplified) Let ℋ(X, r) = log 𝒴(X, r) be the metric entropy. Suppose that 𝒴(X, r) and 𝒴(𝒴, r) only logarithmically depend on r, then if ||h(a_i^Tx)||_{ψ2} ≤ A₁, ||a_i^T||_{ψ2} ≤ A₂, then w.h.p. we can bound (2) as A₁A₂√(𝒴(𝑥,r)+𝒴(𝒴,r)). (We omit r₁, r₂ since they have logarithmic impact on the bound)

Technical Ingredients Needed For Uniform Recovery

- Lipschitz Approximation: (Assump. 3)
- ▷ We handle discontinuous f_i by constructing its Lipschitz approximation $f_{i,\beta}$

Figure 1:(Left): f_i and its approximation $f_{i,0.5}$; (Right): approximation error $\varepsilon_{i,0.5}$, $|\varepsilon_{i,0.5}|$.

▷ We define ξ_{i,β}(a) = f_{i,β}(a) - Ta, ε_{i,β}(a) = f_{i,β}(a) - f_i(a) and require the bounds sup_{x∈K} ||ξ_{i,β}(a^Tx)||_{ψ2} ≤ A⁽¹⁾_g and sup_{x∈K} ||ε_{i,β}(a^Tx)||_{ψ2} ≤ A⁽²⁾_g.
▷ We also require bounds on sup_{x∈K} |ξ_{i,β}(a^Tx)| and sup_{x∈K} |ε_{i,β}(a^Tx)|, but they can be crude ones and totally unproblematic.

Numerical Results: Recovering Multiple Signals With One Design

Reconstructed images and quantitative results of the MNIST dataset for uniformly quantized CS with dithering measurements.

0/2345678901234567890123456789

Small Mismatch: (Assump. 4)

- ▷ The mismatch associated with the nonlinearity f_i , defined as $\rho(\mathbf{x}) = \|E[f_i(\mathbf{a}_i^\top \mathbf{x})] - T\mathbf{x}\|_2$
- ▷ The mismatch induced by the Lipschitz approximation $f_{i,\beta}$, defined as $\mu_{\beta}(\mathbf{x}) = P(\mathbf{a}^{\top}\mathbf{x} \in \mathscr{D}_{f_i} + [-\frac{\beta}{2}, \frac{\beta}{2}])$, where \mathscr{D}_{f_i} is the set of discontinuities of f_i .

▷ We require $\sup_{\mathbf{x}\in\mathcal{K}}\rho(\mathbf{x})$ and $\sup_{\mathbf{x}\in\mathcal{K}}\sqrt{\mu_{\beta}(\mathbf{x})}$ to be $O((A_g^{(1)} + A_g^{(2)})\sqrt{\frac{k}{m}})$

012345678901234567890123456789

