

Thirty-seventh Conference on Neural Information Processing Systems

ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning

Junguang Jiang, Baixu Chen, Junwei Pan[§], Ximei Wang[§], Dapeng Liu[§], Jie Jiang[§], Mingsheng Long[⊠]

Junguang Jiang

Baixu Chen

Junwei Pan

Mingsheng Long

Auxiliary-Task Learning (ATL)

Aim to improve the performance of target tasks by leveraging the useful signals provided by related auxiliary tasks.

Scene Understanding

Target Task: Semantic Segmentation

> Auxiliary Task: Depth Estimation

Semi-supervised Learning

Target Task: Classification

Auxiliary Task: Rotation Prediction

[1] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In CVPR 2018. [2] Zhai X, Oliver A, Kolesnikov A, et al. S4I: Self-supervised semi-supervised learning. In ICCV 2019.

Negative Transfer in ATL

The widely existing phenomenon where the introduced auxiliary tasks lead to performance degradation.

Pairwise transfer learning results on DomainNet. 23 of 30 combinations lead to negative transfer (blue cell).

Exam	Base model	RLHF model
LSAT (MCQ)	67.0 %	72.0 %
SAT EBRW – Reading Portion	92.3 %	90.4 %
SAT EBRW – Writing Portion	90.9 %	84.1 %
SAT Math (MCQ)	91.4 %	86.2 %
Graduate Record Examination (GRE) Quantitative	57.5 %	67.5 %
Graduate Record Examination (GRE) Verbal	87.5 %	90.0 %
USNCO Local Section Exam 2022	51.7 %	63.3 %
AP Art History (MCQ)	72.5 %	66.2 %
AP Biology (MCQ)	98.3 %	96.7 %
AP Calculus BC (MCQ)	66.7 %	57.8 %
AP Chemistry (MCQ)	58.3 %	71.7 %
AP English Language and Composition (MCQ)	55.6 %	51.1 %
AP English Literature and Composition (MCQ)	63.6 %	69.1 %
AP Environmental Science (MCQ)	72.5 %	67.5 %

Negative transfer (red item) when applying RLHF in GPT-4.

Overview of ATL Methods

Problem Setup

➤ Learning Objective in ATL

 \succ *L* represents the loss function and λ is the relative weighting hyperparameter.

Problem Setup

➤ Transfer Gain

$$TG(\lambda, \mathcal{A}) = \mathcal{P}\left(\theta_{\mathcal{A}}(\mathcal{T}_{tgt}, \mathcal{T}_{aux}, \lambda)\right) - \mathcal{P}\left(\theta(\mathcal{T}_{tgt})\right)$$

Model obtained with ATL method A STL Model

➤ P represents the relative performance measure, where a higher P indicates better performance.

Problem Setup

- > Weak Negative Transfer
 - For some ATL algorithm \mathcal{A} with weighting hyper-parameter λ , weak negative transfer occurs if $TG(\lambda, \mathcal{A}) < 0$.

Strong Negative Transfer

For some ATL algorithm \mathcal{A} , strong negative transfer occurs if $\max_{\lambda>0} TG(\lambda, \mathcal{A}) < 0$.

Effect of Gradient Conflicts

> At each optimization step t, we have

$$\theta_{t+1}(\lambda) = \theta_t - \eta(g_{tgt}(\theta_t) + \lambda g_{aux}(\theta_t))$$

Gradient of Target Task

Gradient of Auxiliary Task

Effect of Gradient Conflicts

It is widely believed the gradient conflict between g_{tgt} and g_{aux} will lead to negative transfer, where the degree of conflict is measured by Gradient Cosine Similarity.

> Gradient Cosine Similarity $\cos \phi$

Gradient Conflict Occurs if $\cos \phi < 0$

Effect of Gradient Conflicts

The correlation curve between Transfer Gain (TG) and Gradient Cosine Similarity (GCS) under different λ .

Effect of Gradient Conflicts

[Observation 1] Negative transfer is not necessarily caused by gradient conflicts and gradient conflicts do not necessarily lead to negative transfer.

Effect of Gradient Conflicts

Moreover, it can be observed that the weighting hyper-parameter λ in ATL has a large impact on negative transfer.

> Changing λ will not influence the gradient cosine similarity.

Effect of Distribution Shift

 \succ Adjusting λ will change the data distribution that the model is fitting.

> Formula for Interpolated Distribution

$$\mathcal{T}_{inter} \sim (1-Z)\mathcal{T}_{tgt} + Z\mathcal{T}_{aux} \qquad Z \sim$$

$$\checkmark$$

Target Task

ask Auxiliary Task

-Bernoulli $(\frac{\lambda}{1+\lambda})$

Bernoulli Distribution

Effect of Distribution Shift

> Qualitative Measurement - t-SNE

t-SNE visualization of interpolated training distribution and target task test distribution with different λ .

Effect of Distribution Shift

> Quantitative Measurement - Confidence Score Discrepancy (CSD)

Confidence score discrepancy indicates how unconfident the model is, which is expected to increase when the data shift enlarges.

Effect of Distribution Shift

> Quantitative Measurement - Confidence Score Discrepancy (CSD)

The correlation curve between Transfer Gain (TG) and Confidence Score Discrepancy (CSD) with different λ .

Effect of Distribution Shift

[Observation 2] Negative transfer is likely to occur if the introduced auxiliary task enlarges the distribution shift between training and test data for the target task.

Motivation

$$\theta_{t+1}(\lambda) = \theta_t - \eta(g_{tgt}(\theta_t) + \lambda g_{aux}(\theta_t))$$
Gradient of
Gradient of
Gradient of
Auxiliary Task

[Optimization View] The gradient conflict between g_{tgt} and g_{aux} does not necessarily lead to negative transfer.

[Algorithm Design] Unlike prior works, our algorithm does not aim to directly resolve gradient conflicts.

Motivation

- [Generalization View] Different λ will lead to diverse distribution shift, resulting in different generalization performance.
- > [Algorithm Design] In ForkMerge, we will dynamically adjust λ based on the generalization performance on the validation set.

Algorithm

Denote P̂ the performance measure on the validation set, the learning process can be formulated as a bi-level optimization problem.

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}(\theta_{t+1}) = \hat{\mathcal{P}}(\theta_t - \eta(g_{\operatorname{tgt}}(\theta_t) + \lambda g_{\operatorname{aux}}(\theta_t)))$$

Algorithm

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}(\theta_{t+1}) = \hat{\mathcal{P}}(\theta_t - \eta(g_{\operatorname{tgt}}(\theta_t) + \lambda g_{\operatorname{aux}}(\theta_t)))$$

Existing methods usually approximate P̂ with the loss of a batch of data, and then use first-order approximation to update λ (e.g. use Meta Learning).

Algorithm

 $\lambda^* = \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}(\theta_{t+1}) = \hat{\mathcal{P}}(\theta_t - \eta(g_{\operatorname{tgt}}(\theta_t) + \lambda g_{\operatorname{aux}}(\theta_t)))$

Existing methods usually approximate P̂ with the loss of a batch of data, and then use first-order approximation to update λ (e.g. use Meta Learning).

However, these approximations within a single step of gradient descent (1) introduce large noise to the estimation of λ and also (2) increase the risk of over-fitting the validation set.

Algorithm

$$\lambda^{*} = \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}(\theta_{t+1}) = \hat{\mathcal{P}}(\theta_{t} - \eta(g_{tgt}(\theta_{t}) + \lambda g_{aux}(\theta_{t})))$$

$$= \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}((\theta_{t} - \eta g_{tgt}(\theta_{t})) + \lambda(-\eta g_{aux}(\theta_{t})))$$

$$= \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}((1 - \lambda)(\theta_{t} - \eta g_{tgt}(\theta_{t})) + \lambda(\theta_{t} - \eta(g_{tgt}(\theta_{t}) + g_{aux}(\theta_{t}))))$$

$$= \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}((1 - \lambda)\theta_{t+1}(0) + \lambda(\theta_{t+1}(1))) // gradient \ descent$$

By derivation, we obtain the equivalent optimization objective based on the interpolation of model parameters.

Algorithm

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} \widehat{\mathcal{P}}((1-\lambda)\theta_{t+1}(0) + \lambda(\theta_{t+1}(1)))$$

➤ An accurate estimation in the above equation is computationally expensive and prone to over-fit. Thus, we extend the one gradient step to Δt steps.

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} \hat{\mathcal{P}}((1-\lambda)\theta_{t+\Delta t}(0) + \lambda(\theta_{t+\Delta t}(1))$$

Algorithm

(1) Fork. The initial model will be copied into two independent branches with the same parameters.

Algorithm

(2) **Optimize.** The first branch is only optimized with the target task loss. While the second branch is jointly optimized. Train for Δt steps.

Algorithm

(3) Merge. Search for the optimal λ^* that linearly combines two sets of parameters to maximize the validation performance.

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} \widehat{\mathcal{P}}((1-\lambda)\theta_{t+\Delta t}(0) + \lambda(\theta_{t+\Delta t}(1)))$$

Overall, the [Fork -> Optimize -> Merge]
loop is iterated for
$$\left[\frac{T}{\Delta t}\right]$$
 times.

Extension to Multiple Auxiliary Tasks

> Learning Objective

Similar to the case where there is only one auxiliary task, we outline the following equivalent objective.

Extension to Multiple Auxiliary Tasks

> Equivalent Objective

$$\omega_i^k = \mathbb{I}[i = k \text{ or } i = 0]$$

$$\Lambda_{k} = \begin{cases} 1 - \sum_{i \neq 0} \lambda_{i}, & k = 0\\ \lambda_{k}, & k \neq 0 \end{cases}$$

$$\Lambda^* = \underset{\Lambda}{\operatorname{argmax}} \widehat{\mathcal{P}} \left(\sum_{k=0}^{K} \Lambda_k \, \theta_{t+1}(\omega^k) \right)$$

- The first branch is only optimized with the target task loss.
- For other branches, each is jointly optimized with the target task and the k-th auxiliary task.

Extension to Multiple Auxiliary Tasks

> Equivalent Objective

$$\omega_{i}^{k} = \mathbb{I}[i = k \text{ or } i = 0]$$

$$\Lambda_{k} = \begin{cases} 1 - \sum_{i \neq 0} \lambda_{i}, & k = 0 \\ \lambda_{k}, & k \neq 0 \end{cases}$$

$$\Lambda^{*} = \operatorname{argmax} \widehat{\mathcal{P}} \left(\sum_{k=0}^{K} \Lambda_{k} \theta_{t+1}(\omega^{k})\right)$$

Search for the optimal Λ* that linearly combines the K + 1 sets of parameters to maximize the validation performance.

General Form

$$\overline{\Lambda}^* = \underset{\overline{\Lambda}}{\operatorname{argmax}} \widehat{\mathcal{P}} \left(\sum_{b=1}^{B} \overline{\Lambda}_b \, \theta_{t+\Delta t}(\nu^b) \right)$$

➤ The general form has no constraints on the number of branches B and the task weighting vector v^b.

General Form

$$\overline{\Lambda}^* = \underset{\overline{\Lambda}}{\operatorname{argmax}} \widehat{\mathcal{P}} \left(\sum_{b=1}^{B} \overline{\Lambda}_b \, \theta_{t+\Delta t}(\nu^b) \right)$$

➤ The general form has no constraints on the number of branches B and the task weighting vector v^b.

Allow us to introduce human prior into ForkMerge by constructing more efficient branches.

General Form

$$\overline{\Lambda}^* = \underset{\overline{\Lambda}}{\operatorname{argmax}} \widehat{\mathcal{P}} \left(\sum_{b=1}^{B} \overline{\Lambda}_b \, \theta_{t+\Delta t}(\nu^b) \right)$$

- ➤ The general form has no constraints on the number of branches B and the task weighting vector v^b.
 - Allow us to introduce human prior into ForkMerge by constructing more efficient branches.
 - Provide possibilities for combining ForkMerge with previous task grouping methods.

Discussion on Computation Cost

$$\overline{\Lambda}^* = \underset{\overline{\Lambda}}{\operatorname{argmax}} \widehat{\mathcal{P}} \left(\sum_{b=1}^{B} \overline{\Lambda}_b \, \theta_{t+\Delta t}(\nu^b) \right)$$

- The choice of the B implies a trade-off between performance and efficiency. In practice, users may tailor B to align with their computational resources.
- We have also developed several techniques to reduce computation cost such as the pruning strategy and the greedy merging strategy. Please refer to our paper for details.

Main Results

- ForkMerge consistently achieves state-of-the-art performance across 4 benchmarks, including:
- > Auxiliary-Task Scene Understanding (+4.03% v.s. previous SOTA +2.10%).
- Auxiliary-Domain Image Recognition (+2.00% over STL, while most existing methods fail to improve performance).
- > CTR and CTCVR Prediction (+1.30% v.s. previous SOTA +0.55%).
- Semi-Supervised Learning (SSL) (+46.3% v.s. previous SOTA + 43.2%).

Analysis Experiments

 \succ Effect of the merging step Δt .

Analysis Experiments

> Importance of different forking branches during training.

> Please refer to our paper for more analysis.

Analysis Experiments

> Comparison with grid searching (top-right is better).

Thank You!

JiangJunguang1123@outlook.com

cbx_99_hasta@outlook.com

