Minimax Optimal Rate for Parameter Estimation in Multivariate Deviated Model

NeurIPS 2023

Dat $Do^{\dagger,\star}$, Huy Nguyen^{‡,\star}, Khai Nguyen[‡], Nhat Ho[‡]

University of Michigan at Ann Arbor[†]; University of Texas at Austin[‡]

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Goals

In this work, we aim to study the parameter estimation rate of the *Multivariate Deviated Model*:

$$p_G(x) = (1 - \lambda)h_0(x) + \lambda f(x|\mu, \Sigma), \qquad (1)$$

where

 h_0 is a known density, *f* is a known family of densities.

► $\lambda \in (0, 1), \mu \in \mathbb{R}^{d_1}, \Sigma \in \mathbb{R}^{d_2 \times d_2}$ are parameters to be estimated.

イモトイモト

Motivation

$$p_G(x) = (1 - \lambda)h_0(x) + \lambda f(x|\mu, \Sigma),$$

- Hypothesis testing: The null hypothesis h₀ and the alternative is p_G. Applications in microarray data analysis.
- Contaminated model: h₀ is previously known data distribution, and we want to estimate the contaminated part
- Domain adaptation: h₀ is a pre-trained large model estimated from a domain, and f is a low-rank adaptation part to be estimated for a new domain.

Setup, Goals, and Challenges

Observe n i.i.d. data from

$$\mathcal{p}_{G}(x) = (1 - \lambda^{*})h_{0}(x) + \lambda^{*}f(x|\mu^{*},\Sigma^{*}),$$

and we get the MLE $\widehat{G}_n = (\widehat{\lambda}_n, \widehat{\mu}_n, \widehat{\Sigma}_n) = \arg \max \sum_{i=1}^n \log p_G(x_i)$.

We want to obtain the optimal uniform rate

$$(\widehat{\lambda}_n, \widehat{\mu}_n, \widehat{\Sigma}_n) \to (\lambda^*, \mu^*, \Sigma^*).$$

Challenges:

- 1. When $\lambda^* \approx 0$, it is harder to estimate (μ^*, Σ^*) (singularity);
- 2. In the setting $h_0 = f(x|\mu_0, \Sigma_0)$, it is harder to estimate λ^* when $(\mu^*, \Sigma^*) \approx (\mu_0, \Sigma_0)$ (identifiability)

- A I I I A I I I I

Uniform rate of convergence

Suppose there is a Machine Learning model $(f_{\theta})_{\theta \in \Theta}$

- ▶ Data is generated from f_{θ^*} (θ^* : true parameter);
- We obtain an estimator $\hat{\theta}_n$ from *n* i.i.d. data.
- ► How many data to obtain ϵ -error of the estimator? (i.e., $\|\widehat{\theta}_n \theta^*\| \le \epsilon$)

Rate of convergence: $\|\widehat{\theta}_n - \theta^*\| \lesssim C_{\theta^*} \times rate(n)$ Uniform rate of convergence: $\|\widehat{\theta}_n - \theta^*\| \lesssim C \times rate(n)$, where *C* does not depend on θ^* .

Main result 1: Distinguishable setting

Theorem 1

Suppose h_0 is linearly independent with $f(\cdot|\mu, \Sigma)$ and its derivatives, for all (μ, Σ) . Then,

$$\sup_{G_*} \mathbb{E}_{p_{G_*}} \left(\lambda^* \| (\widehat{\mu}_n, \widehat{\Sigma}_n) - (\mu^*, \Sigma^*) \| \right) \lesssim \frac{\log(n)}{\sqrt{n}},$$
$$\sup_{G_*} \mathbb{E}_{p_{G_*}} \left(|\widehat{\lambda}_n - \lambda^*| \right) \lesssim \frac{\log(n)}{\sqrt{n}},$$

and this is also the minimax rate.

Image: A image: A

Main result 2: Non-distinguishable and Strongly identifiable setting

Theorem 2

Suppose $h_0(\cdot) = f(\cdot|\mu_0, \Sigma_0)$, and the family of densities f with its derivatives up to second-order are linearly independent. Then,

$$\begin{split} \sup_{G_*} \mathbb{E}_{\rho_{G_*}} \left(\lambda^* \| (\mu^*, \Sigma^*) - (\mu_0, \Sigma_0) \| \| (\widehat{\mu}_n, \widehat{\Sigma}_n) - (\mu^*, \Sigma^*) \| \right) \lesssim \frac{\log(n)}{\sqrt{n}}, \\ \sup_{G_*} \mathbb{E}_{\rho_{G_*}} \left(\| (\mu^*, \Sigma^*) - (\mu_0, \Sigma_0) \|^2 |\widehat{\lambda}_n - \lambda^*| \right) \lesssim \frac{\log(n)}{\sqrt{n}}. \end{split}$$

and this is also the minimax rate.

Weak identifiable setting

When $f(x|\mu, \Sigma)$ is the Gaussian distribution, we do not have the strong identifiability since $\frac{\partial^2 f(x|\mu, \Sigma)}{\partial \mu \partial \mu^{\top}} = 2 \frac{\partial f(x|\mu, \Sigma)}{\partial \Sigma}$

Theorem 3

$$\begin{split} \sup_{G_*} \mathbb{E}_{p_{G_*}} \Big((\lambda^*) \left\{ \|\mu^* - \mu_0\|^2 + \|\Sigma^* - \Sigma_0\| \right\} \\ & \times \left\{ \|\widehat{\mu}_n - \mu^*\|^2 + \|\widehat{\Sigma}_n - \Sigma^*\| \right\} \Big) \lesssim \frac{\log(n)}{\sqrt{n}}, \\ \sup_{G_*} \mathbb{E}_{p_{G_*}} \Big(\left\{ \|\mu^* - \mu_0\|^4 + \|\Sigma^* - \Sigma_0\|^2 \right\} |\widehat{\lambda}_n - \lambda^*| \Big) \lesssim \frac{\log(n)}{\sqrt{n}}. \end{split}$$

- * ロ > * 個 > * 注 > * 注 > … 注 … のへで

Simulation study (1): Distinguishable setting

 h_0 is a standard Cauchy distribution, and $f(\cdot|\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2 .

Figure: Case (i) $\lambda^* = 0.5$; Case (ii) $\lambda^* = 0.5/n^{1/4}$.

Simulation study (2): Weakly identifiable setting Case 1: $\mu^* = \mu_0$ and $(\sigma^*)^2 \rightarrow \sigma_n^2$ in the rate $n^{-1/8}$ Case 2: $\sigma^* = \sigma_0$ and $\mu^* \rightarrow \mu_0$ in the rate $n^{-1/8}$.

(a) Rate of $\hat{\lambda}_n$

(b) Rate of $\hat{\mu}_n$

(c) Rate of $\hat{\sigma}_n^2$

Minimax Optimal Rate for Parameter Estimation in Multivariate Deviated Model

Conclusions

We study the minimax rate and MLE convergence rate of the deviated model.

- Obtain the uniform rate of convergence by carefully specifying different linear independence settings between h₀ and f;
- Future direction: Uniform rate when deviating by a complex, hierarchical model or h₀ itself is a hierarchical model.