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Motivation: SSL + Persistent Homology = ? 

l Self-supervised learning (SSL) has great potential for 
molecular representation learning.

l Persistent homology (PH) is a mathematical tool for 
modeling topological features of data that persist across 
multiple scales.

l PH has proven effective for supervised molecular 
representation learning, esp. in studies from chemists.

l There are no studies on SSL!



Persistent Homology (PH) on molecular graphs 

l Molecules are graphs 𝐺 = (𝑉, 𝐸) with nodes (0-simplex) 𝑉
the atoms, and bond edges (1-simplex) 𝐸. Graph homology 
considers such a graph 𝐺 as a topological space.

1. Filtrations. Construct a nested sequence of subgraphs 
𝐺! ⊆	… ⊆ 	𝐺" = 𝐺 by filtering, e.g., nodes by atom number. 

2. Persistence Diagram (PD). During filtration, PH records 
all these birth and death times of the topological structures 
(the homology groups generated by simplices) in a PD. 

3. Vectorization. Convert the PD into a format usable for 
ML called fingerprint, e.g., persistence images (PIs).



Various opportunities for SSL
l Different filtrations and vectorizations yield views

l Stability feature of many fingerprints: distances 
between fingerprints are bounded by 1-WD between 
corresponding PDs

l Filtration design based on domain knowledge

Persistent Homology (PH) on molecular graphs 

We Explore the Potential of PH for SSL 



Topological Fingerprints AutoEncoder (TAE)
l Here, we consider topological fingerprints 𝐼# as the 
reconstruction targets:

through a typical graph encoder ε 𝐺 , a projection head 
𝑔(·) and readout function 𝑅 · .



Topological Fingerprints AutoEncoder (TAE)
l Here, we consider topological fingerprints 𝐼# as the 
reconstruction targets:

through a typical graph encoder ε 𝐺 , a projection head 
𝑔(·) and readout function 𝑅 · .

l Pre-trained TAE reconstructed downstream tasks’ PIs 
(Pearson correlation coefficient)



Topological Distance Contrastive Loss (TDL)
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Different from regular contrastive learning, we have 
supervision about the distances between all molecules.



Topological Distance Contrastive Loss (TDL)

l Here, we focus on the distances between the given 
molecules (i.e., not views) since those are usually ignored.
l Our topological distance contrastive loss (TDL):
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Topological Distance Contrastive Loss (TDL)
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TDL is efficient and can be flexibly applied to improve 
the embedding space (the main goal of SSL) of any 
existing contrastive method. 



Evaluation

l Notably, TDL demonstrates convincing improvements across all 
baselines and gets competitive with SOTA.



Evaluation

l The results are mixed, TDL yields overall impressive increases.



Evaluation



Conclusions

https://github.com/LUOyk1999/Molecular-homology

TDL is overall effective 
l Particularly in probing and w/ low data, 
where the SSL embedding space is important.
l It also helps mitigating deficiencies of 
individual baselines.
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Thanks for listening!


