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Gaussian process distribution is rigid

Misclassified data

Bound is not tight

Data mostly above 
mean – asymmetric!

Out-of-the-box GP has potentially poor calibration
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▪ Check-score-based: Song et al. (2019), Kuleshov and Deshpande (2022)
➨ Tight intervals, but less accurate and weaker guarantees

Open Problem: Accurate models with tight intervals + strong guarantees
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▪ Step 2: Leverage monotonicity properties of posterior variance to compute model for 
any confidence level

▪ Enforce monotonicity in hyperparameters with increasing confidence level 𝛿
➨ Monotonicity in confidence regions
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Calibrated Gaussian Processes – Our Approach

Theorem

If data is iid, then, for all confidence levels    :

Number of 
calibration data

Enforces calibration AND optimizes sharpness
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Calibrated Gaussian Processes – Results Benchmark Datasets

▪ Best calibration or marginally worse

▪ Best sharpness of those that enforce calibration

OURS RK RV RM NN B

ECE 0,00071 0,00064 0,00064 0,00064 0,00560 0,03900

STD 0,16 0,38 0,38 0,38 0,22 1,90

NLL 0,26 0,63 0,64 0,63 -0,36 1,60

95% Cl 0,76 1,70 1,80 1,70 0,96 7,40



Calibrated Gaussian Processes

Thank you!
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