Sharp Calibrated Gaussian Processes

Alexandre Capone¹, Sandra Hirche¹, Geoff Pleiss²

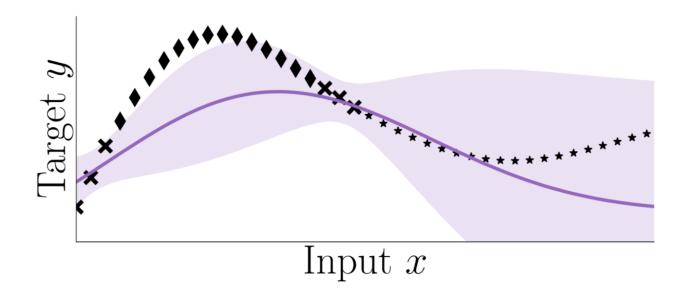
- 1- Technical University of Munich
- 2- University of British Columbia/Vector Institute

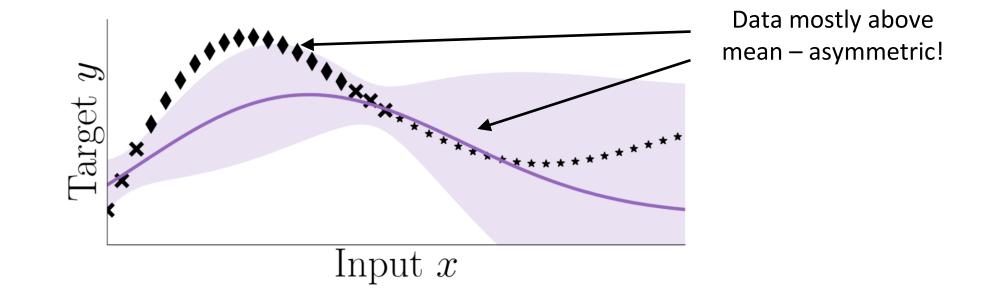
Contact: alexandre.capone@tum.de

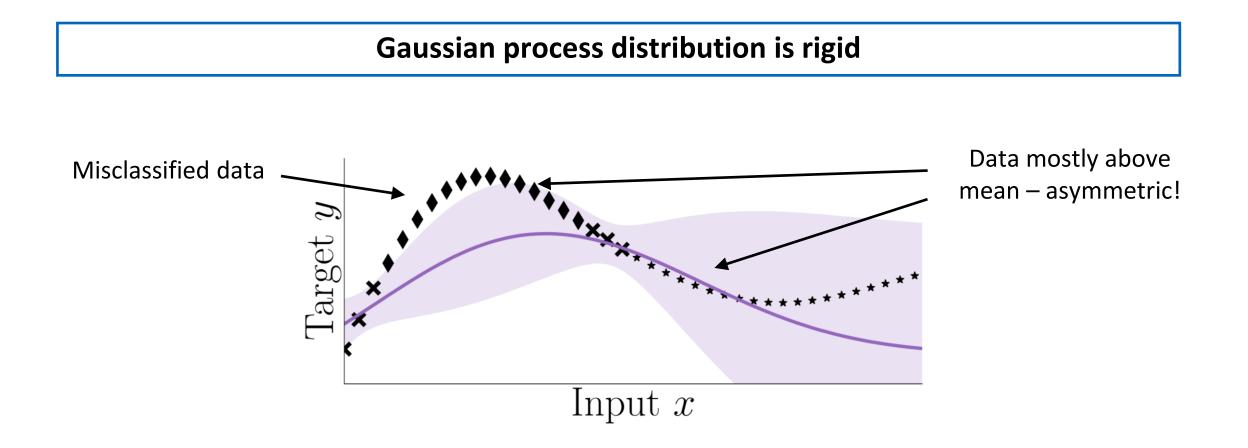
Neurips, 14 December 2021

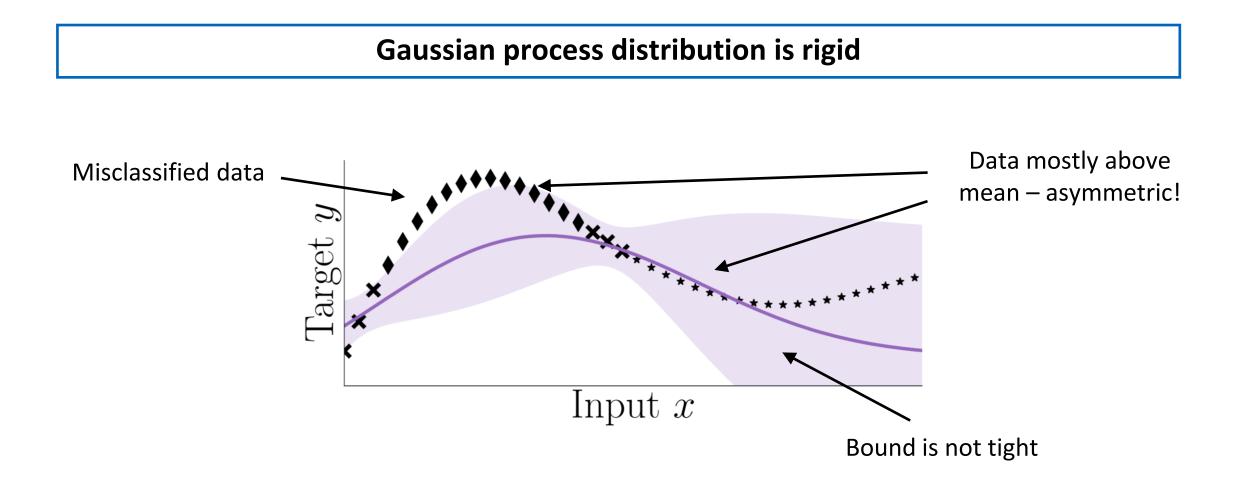
Gaussian process distribution is rigid

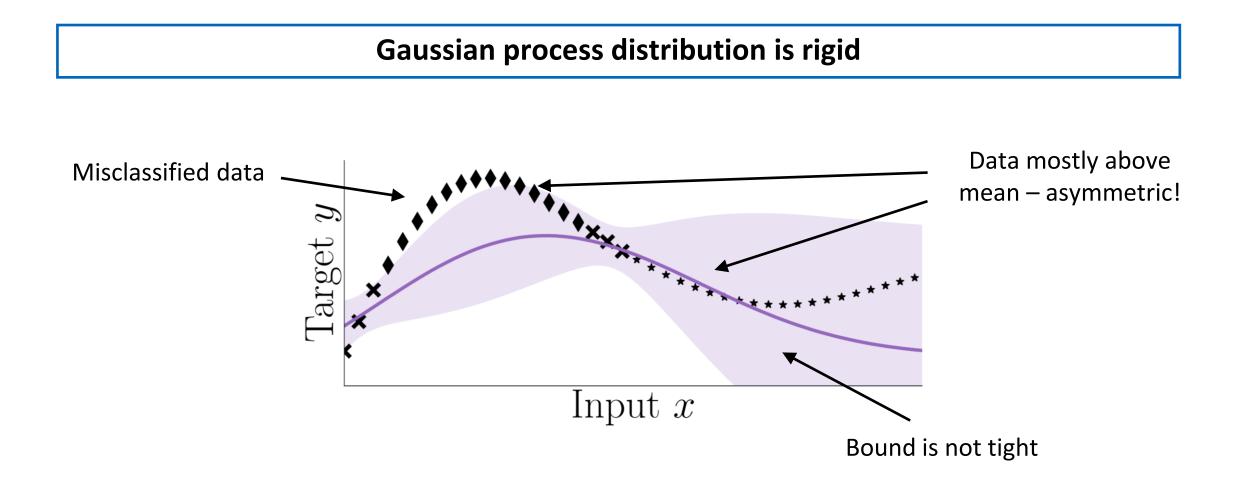
Gaussian process distribution is rigid













Calibrated Gaussian Processes – Related Work

- Recalibration approaches: Kuleshov et al. (2018), Vovk et al. (2020), Marx et al. (2022)
 - **Theoretical guarantees**, but **confidence intervals too coarse**

• Check-score-based: Song et al. (2019), Kuleshov and Deshpande (2022)

Calibrated Gaussian Processes – Related Work

- Recalibration approaches: Kuleshov et al. (2018), Vovk et al. (2020), Marx et al. (2022)
 - **Theoretical guarantees**, but **confidence intervals too coarse**

Check-score-based: Song et al. (2019), Kuleshov and Deshpande (2022)
Tight intervals, but less accurate and weaker guarantees

Calibrated Gaussian Processes – Related Work

- Recalibration approaches: Kuleshov et al. (2018), Vovk et al. (2020), Marx et al. (2022)
 - **Theoretical guarantees**, but **confidence intervals too coarse**

Check-score-based: Song et al. (2019), Kuleshov and Deshpande (2022)
Tight intervals, but less accurate and weaker guarantees

Open Problem: Accurate models with **tight intervals + strong guarantees**

Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

 Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level

Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

 Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

$$\begin{split} \min_{\substack{\beta_{\delta} \in \mathbb{R} \\ \boldsymbol{\theta}_{\delta} \in \boldsymbol{\Theta}}} & \sum_{i=1}^{N_{\text{cal}}} \beta_{\delta}^{2} \sigma_{\mathcal{D}_{\text{tr}}}^{2} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\text{cal}}^{i}\right) \\ \text{s.t.} & \sum_{i=1}^{N_{\text{cal}}} \frac{\mathbb{I}_{\geq 0} \left(\Delta y_{\text{cal}}^{i} - \beta_{\delta} \sigma_{\mathcal{D}_{\text{tr}}} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\text{cal}}^{i}\right)\right)}{N_{\text{cal}} + 1} = \delta \end{split}$$

Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

$$\begin{split} \min_{\substack{\beta_{\delta} \in \mathbb{R} \\ \boldsymbol{\theta}_{\delta} \in \boldsymbol{\Theta}}} & \sum_{i=1}^{N_{\text{cal}}} \beta_{\delta}^{2} \sigma_{\mathcal{D}_{\text{tr}}}^{2} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\text{cal}}^{i} \right) \bigstar \end{split} \quad \text{Tightness} \\ \text{s.t.} & \sum_{i=1}^{N_{\text{cal}}} \frac{\mathbb{I}_{\geq 0} \left(\Delta y_{\text{cal}}^{i} - \beta_{\delta} \sigma_{\mathcal{D}_{\text{tr}}} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\text{cal}}^{i} \right) \right)}{N_{\text{cal}} + 1} = \delta \end{split}$$

Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

$$\begin{split} \min_{\substack{\beta_{\delta} \in \mathbb{R} \\ \boldsymbol{\theta}_{\delta} \in \boldsymbol{\Theta}}} & \sum_{i=1}^{N_{\mathrm{cal}}} \beta_{\delta}^{2} \sigma_{\mathcal{D}_{\mathrm{tr}}}^{2} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\mathrm{cal}}^{i} \right) & \longleftarrow \end{split}$$
 Tightness Guarantees δ of the data is contained s.t. $\sum_{i=1}^{N_{\mathrm{cal}}} \frac{\mathbb{I}_{\geq 0} \left(\Delta y_{\mathrm{cal}}^{i} - \beta_{\delta} \sigma_{\mathcal{D}_{\mathrm{tr}}} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\mathrm{cal}}^{i} \right) \right)}{N_{\mathrm{cal}} + 1} = \delta \end{split}$

 Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

Unconstrained reformulation:

 Step 1: Leverage flexibility of separate hyperparameters to compute tight confidence intervals

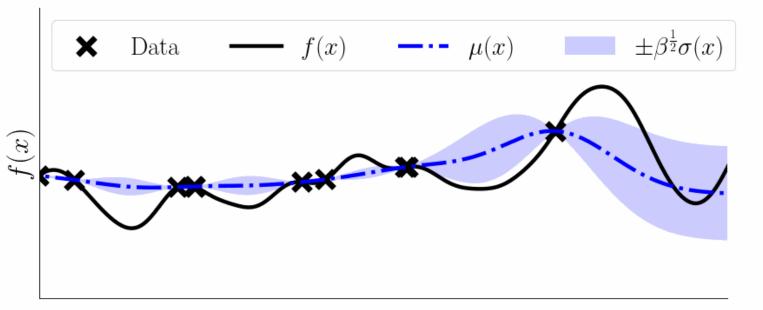
$$\begin{split} \min_{\substack{\beta_{\delta} \in \mathbb{R} \\ \boldsymbol{\theta}_{\delta} \in \boldsymbol{\Theta}}} & \sum_{i=1}^{N_{\mathrm{cal}}} \beta_{\delta}^{2} \sigma_{\mathcal{D}_{\mathrm{tr}}}^{2} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\mathrm{cal}}^{i} \right) & \longleftarrow \end{split}$$
 Tightness Guarantees δ of the data is contained s.t. $\sum_{i=1}^{N_{\mathrm{cal}}} \frac{\mathbb{I}_{\geq 0} \left(\Delta y_{\mathrm{cal}}^{i} - \beta_{\delta} \sigma_{\mathcal{D}_{\mathrm{tr}}} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\mathrm{cal}}^{i} \right) \right)}{N_{\mathrm{cal}} + 1} = \delta \end{split}$

Unconstrained reformulation:

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\varTheta}} \sum_{i=1}^{N_{\mathrm{cal}}} \left[q_{\mathrm{lin}}(\delta, \boldsymbol{\Sigma}_{\mathcal{D}_{\mathrm{tr}}}^{-1} \boldsymbol{\Delta} \boldsymbol{y}_{\mathrm{cal}}) \sigma_{\mathcal{D}_{\mathrm{tr}}} \left(\boldsymbol{\theta}_{\delta}, \boldsymbol{x}_{\mathrm{cal}}^{i} \right) \right]^{2}$$

 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level

 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level



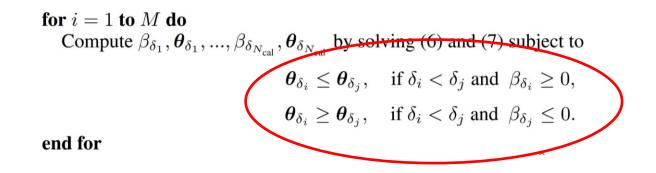
 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level

> for i = 1 to M do Compute $\beta_{\delta_1}, \theta_{\delta_1}, ..., \beta_{\delta_{N_{cal}}}, \theta_{\delta_{N_{cal}}}$ by solving (6) and (7) subject to $\theta_{\delta_i} \leq \theta_{\delta_j}$, if $\delta_i < \delta_j$ and $\beta_{\delta_i} \geq 0$, $\theta_{\delta_i} \geq \theta_{\delta_j}$, if $\delta_i < \delta_j$ and $\beta_{\delta_j} \leq 0$. end for

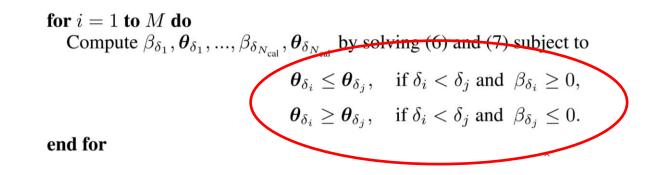
^

^

 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level

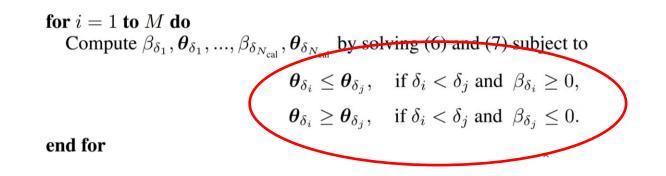


 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level



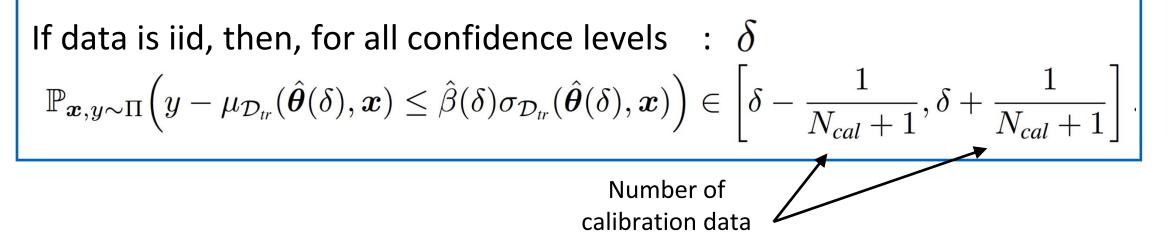
- Enforce monotonicity in hyperparameters with increasing confidence level δ

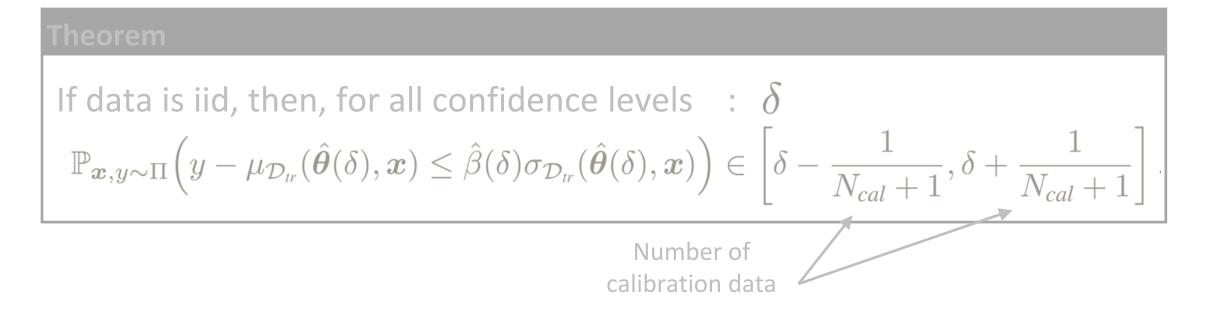
 Step 2: Leverage monotonicity properties of posterior variance to compute model for any confidence level

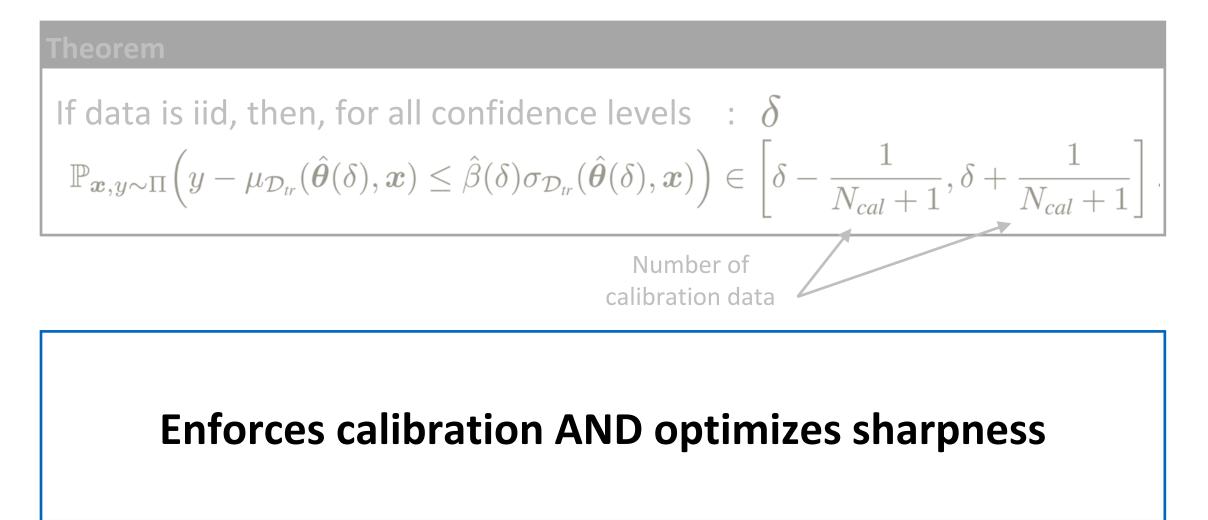


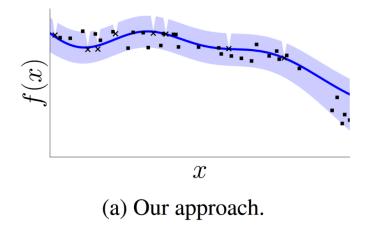
- Enforce monotonicity in hyperparameters with increasing confidence level δ
 - ➡ Monotonicity in confidence regions

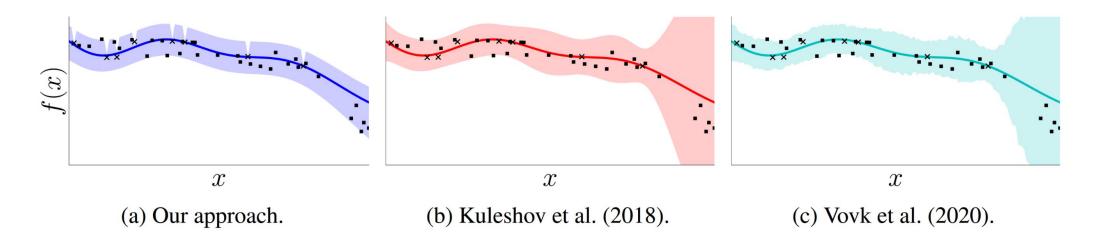
Theorem

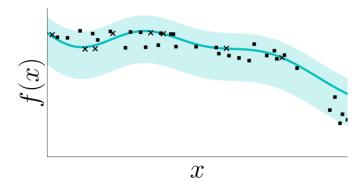




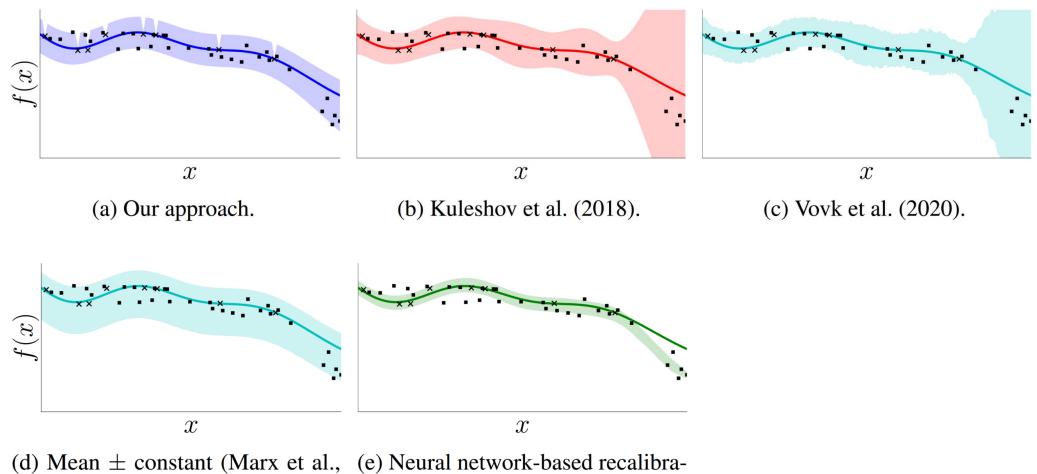






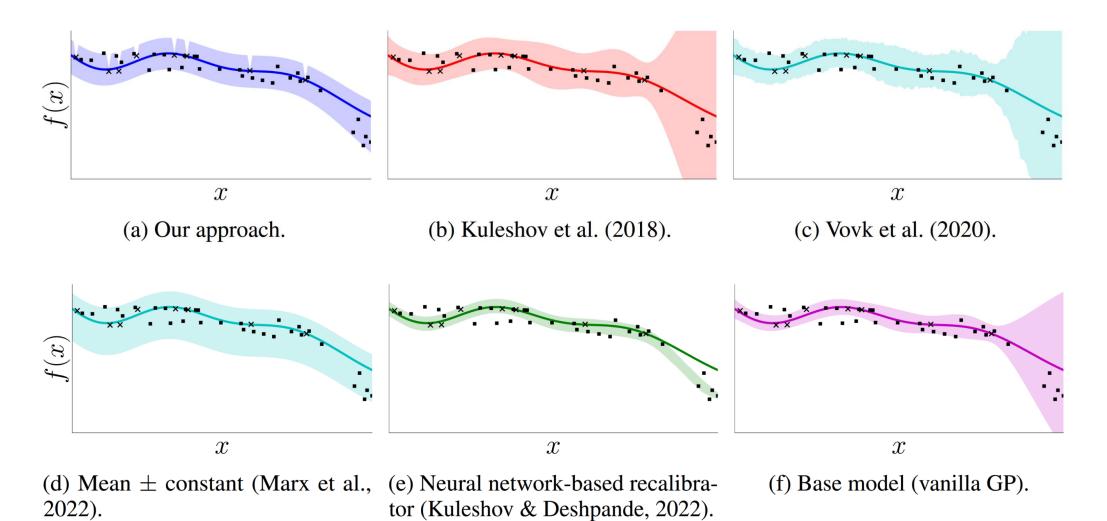


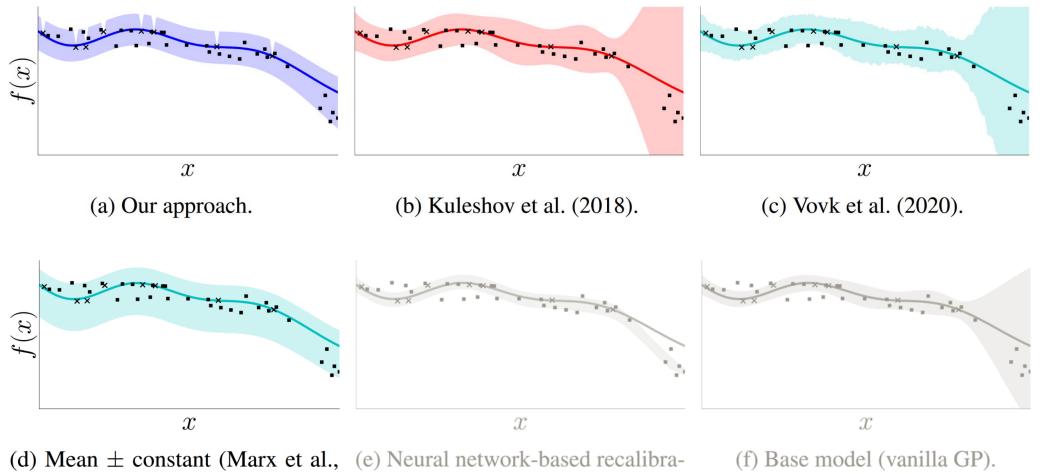
(d) Mean \pm constant (Marx et al., 2022).



tor (Kuleshov & Deshpande, 2022).

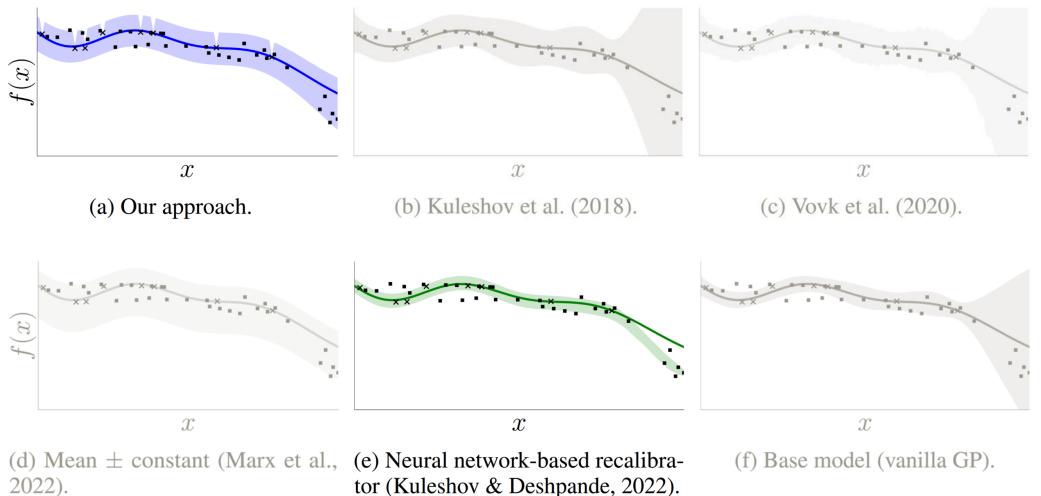
2022).





tor (Kuleshov & Deshpande, 2022).

2022).



tor (Kuleshov & Deshpande, 2022).

DATA SET	METRIC	OURS	RK	RV	RM	NN	В	DATA SET	METRIC	OURS	RK	RV	RM	NN	В
	ECE	0.003	0.0029	0.0029	0.0029	0.0056	0.041		ECE	0.00047	0.00047	0.00047	0.00047	0.0067	0.0058
	STD	0.16	0.31	0.3	0.33	0.22	1.9		STD	0.54	1	1	0.88	0.72	1.4
BOSTON	NLL	0.21	0.39	0.4	0.42	-0.24	1.6	WINE	NLL	1.2	1.3	1.3	1.3	-0.36	1.4
	95% CI	0.76	1.4	1.4	1.4	0.73	7.4		95% CI	2.1	3.8	3.8	3.9	2.8	5.4
	ECE	0.0044	0.0043	0.0044	0.0043	0.0081	0.039		ECE	0.00071	0.00064	0.00064	0.00064	0.00076	0.032
	STD	0.16	0.5	0.47	0.5	0.14	2.8		STD	0.25	0.64	0.64	0.64	0.57	2.8
YACHT	NLL	0.26	0.68	0.69	0.68	-2	2	CONCRETE	NLL	0.72	1.1	1.1	1.1	0.85	2
	95% CI	0.76	2.3	2.3	2.3	0.3	11		95% CI	0.93	2.5	2.5	2.5	2.1	11
	ECE	0.0036	0.0035	0.0035	0.0035	0.0053	0.044		ECE	0.00016	0.00016	0.00016	0.00016	0.00053	0.028
	STD	0.13	0.38	0.38	0.38	0.29	2.8		STD	0.074	0.12	0.12	0.12	0.098	0.4
MPG	NLL	0.032	0.63	0.64	0.63	0.02	2	kin8nm	NLL	-0.54	-0.65	-0.65	-0.63	-0.76	0.1
	95% CI	0.6	1.7	1.8	1.7	0.96	11		95% CI	0.26	0.47	0.47	0.48	0.44	1.6
									ECE	0.00044	0.00043	0.00043	0.00045	0.0089	0.044
									STD	0.068	0.18	0.18	0.18	0.18	1.2
								FACEBOOK2	NLL	3.6	-1.3	-1.3	-1.2	-2.3	1.2
									95% CI	0.6	1.7	1.7	1.7	3.4	4.6

DATA SET	METRIC	OURS	RK	RV	RM	NN	В	DATA SET	METRIC	OURS	RK	RV	RM	NN	В
	ECE	0.003	0.0029	0.0029	0.0029	0.0056	0.041		ECE	0.00047	0.00047	0.00047	0.00047	0.0067	0.0058
	STD	0.16	0.31	0.3	0.33	0.22	1.9		STD	0.54	1	1	0.88	0.72	1.4
BOSTON	NLL	0.21	0.39	0.4	0.42	-0.24	1.6	WINE	NLL	1.2	1.3	1.3	1.3	-0.36	1.4
	95% CI	0.76	1.4	1.4	1.4	0.73	7.4		95% CI	2.1	3.8	3.8	3.9	2.8	5.4
	ECE	0.0044	0.0043	0.0044	0.0043	0.0081	0.039		ECE	0.00071	0.00064	0.00064	0.00064	0.00076	0.032
	STD	0.16	0.5	0.47	0.5	0.14	2.8		STD	0.25	0.64	0.64	0.64	0.57	2.8
YACHT	NLL	0.26	0.68	0.69	0.68	-2	2	CONCRETE	NLL	0.72	1.1	1.1	1.1	0.85	2
	95% CI	0.76	2.3	2.3	2.3	0.3	11		95% CI	0.93	2.5	2.5	2.5	2.1	11
	ECE	0.0036	0.0035	0.0035	0.0035	0.0053	0.044		ECE	0.00016	0.00016	0.00016	0.00016	0.00053	0.028
	STD	0.13	0.38	0.38	0.38	0.29	2.8		STD	0.074	0.12	0.12	0.12	0.098	0.4
MPG	NLL	0.032	0.63	0.64	0.63	0.02	2	kin8nm	NLL	-0.54	-0.65	-0.65	-0.63	-0.76	0.1
	95% CI	0.6	1.7	1.8	1.7	0.96	11		95% CI	0.26	0.47	0.47	0.48	0.44	1.6
									ECE	0.00044	0.00043	0.00043	0.00045	0.0089	0.044
									STD	0.068	0.18	0.18	0.18	0.18	1.2
								FACEBOOK2	NLL	3.6	-1.3	-1.3	-1.2	-2.3	1.2
									95% CI	0.6	1.7	1.7	1.7	3.4	4.6

DATA SET		OURS	RK	RV	RM	NN	В
Boston	ECE	0,00071	<u>0,00064</u>	<u>0,00064</u>	<u>0,00064</u>	0,00560	0,03900
YACHT	STD	<u>0,16</u>	0,38	0,38	0,38	0,22	1,90
MPG	NLL	0,26	0,63	0,64	0,63	<u>-0,36</u>	1,60
	95% Cl	<u>0,76</u>	1,70	1,80	1,70	0,96	7,40

Data set		OURS	RK	RV	RM	NN	В
	ECE	0,00071	<u>0,00064</u>	<u>0,00064</u>	<u>0,00064</u>	0,00560	0,03900
YACHT	STD	<u>0,16</u>	0,38	0,38	0,38	0,22	1,90
MPG	NLL	0,26	0,63	0,64	0,63	-0,36	1,60
	95% Cl	0,76	1,70	1,80	1,70	0,96	7,40

Best calibration or marginally worse

DATA SET		OURS	RK	RV	RM	NN	B
Boston	ECE	0,00071	<u>0,00064</u>	<u>0,00064</u>	<u>0,00064</u>	0,00560	0,03900
	STD	<u>0,16</u>	0,38	0,38	0,38	0,22	1,90
	NLL	0,26	0,63	0,64	0,63	<u>-0,36</u>	1,60
	95% Cl	<u>0,76</u>	1,70	1,80	1,70	0,96	7,40

- Best calibration or marginally worse
- Best sharpness of those that enforce calibration

Calibrated Gaussian Processes

Thank you!

