

Critical Initialization of Wide and Deep Neural Networks using Partial Jacobians

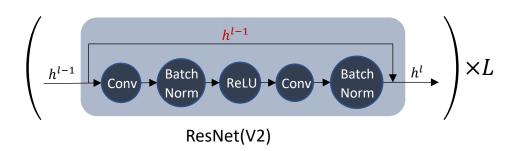
Darshil Doshi, Tianyu He, Andrey Gromov

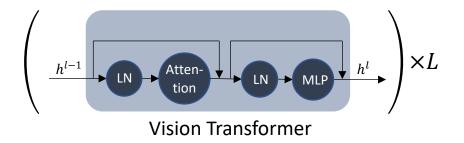
Overview

Deep neural networks need to be initialized at "criticality" to avoid exploding/vanishing gradients and ensure nonexponential scaling with depth.

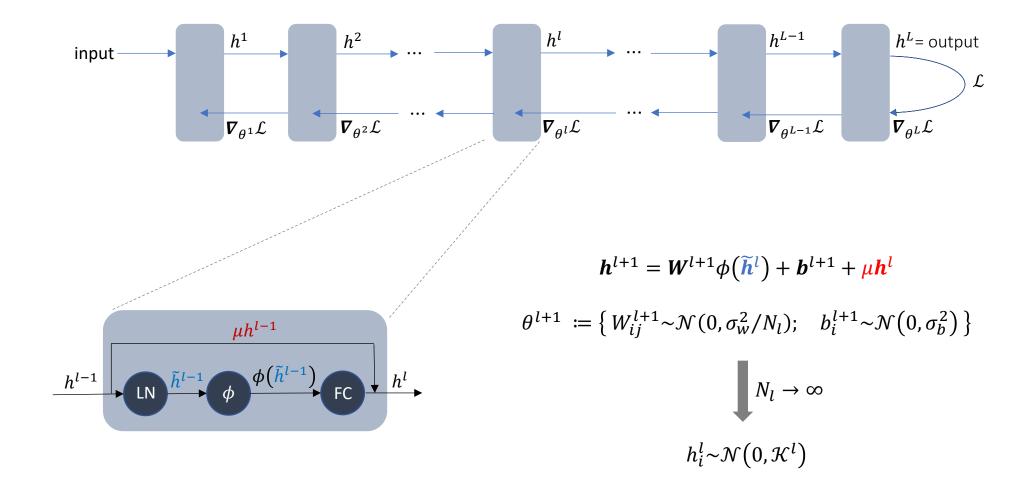
Key Contributions:

- 1. Novel diagnostic for critical initialization, Averaged Partial Jacobian Norm (APJN), that is..
 - applicable to general feedforward architectures (Transformers, CNNs, MLPs etc.)
 - numerically cheap to estimate
 - analytically sound; equivalent to known theoretical measures
- 2. Identification and analysis of **everywhere-critical architectures**:
 - Architectures can be designed to be *critical regardless of their initialization*, by using specific combinations of normalization layers and residual connections





Signal Propagation



Critical Initializtion

To analyse the behaviour of gradients, we define APJN:

 $\mathcal{J}^{l_0,l} \coloneqq \mathbb{E}_{\theta} \left[\left\| \boldsymbol{\nabla}_{\boldsymbol{h}^{l_0}} \boldsymbol{h}^l \right\|_F^2 / N_l \right]$

Gradients scale depends on scaling of APJN $\mathcal{J}^{l,L}$

 $\boldsymbol{\nabla}_{\theta^{l}} \mathcal{L} = (\boldsymbol{\nabla}_{h^{L}} \mathcal{L}) (\boldsymbol{\nabla}_{h^{l}} h^{L}) (\boldsymbol{\nabla}_{\theta^{l}} h^{l})$ $\|\boldsymbol{\nabla}_{\theta^{l}} \mathcal{L}\|^{2} \approx O \left(\|\boldsymbol{\nabla}_{h^{L}} \mathcal{L}\|^{2} \cdot \mathcal{J}^{l,L} \cdot \mathcal{K}^{l} \right)$

In the limit $N_l \rightarrow \infty$, APJN can be written as a product of layer-to-layer APJNs:

$$\mathcal{J}^{l_0,l} = \mathcal{J}^{l_0,l_0+1} \, \mathcal{J}^{l_0+1,l_0+2} \cdots \mathcal{J}^{l-1,l}$$

 $\mathcal{J}^{l-1,l}$ only depends on σ_w^2 , σ_b^2 , ϕ and μ .

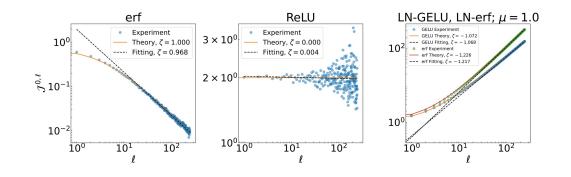
To avoid exploding/vanishing gradients, we want $\mathcal{J}^{l_0,l}$ to behave **non-exponentially** with l. This can be achieved by:

$$\mathcal{J}^{l-1,l}\Big|_{l\to\infty} = 1$$

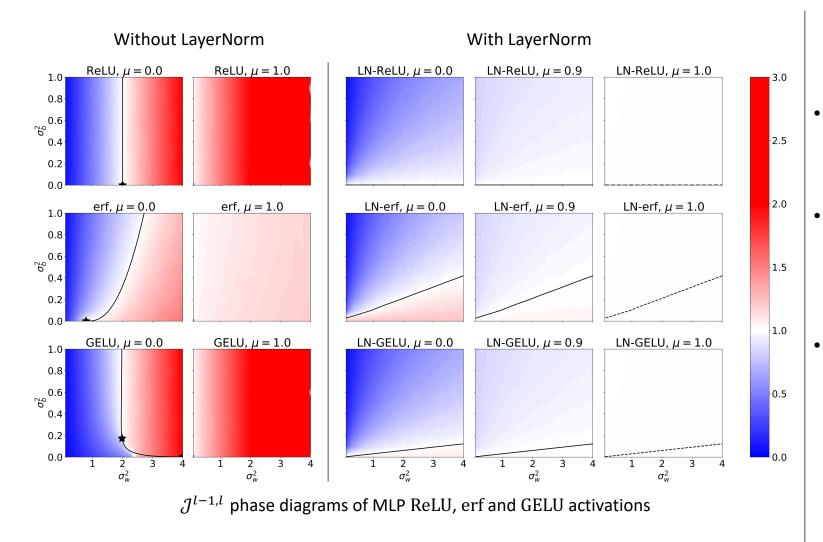
This gives us the **critical line** in the $\sigma_w - \sigma_b$ plane.

Without LayerNorm, demanding non-exponential behaviour of \mathcal{K}^l gives us the **critical point** in the $\sigma_w - \sigma_b$ plane.

At the critical point, $\mathcal{J}^{l_0,l}$ scales algebraically with l: $\mathcal{J}^{l_0,l} \sim l^{-\zeta}$

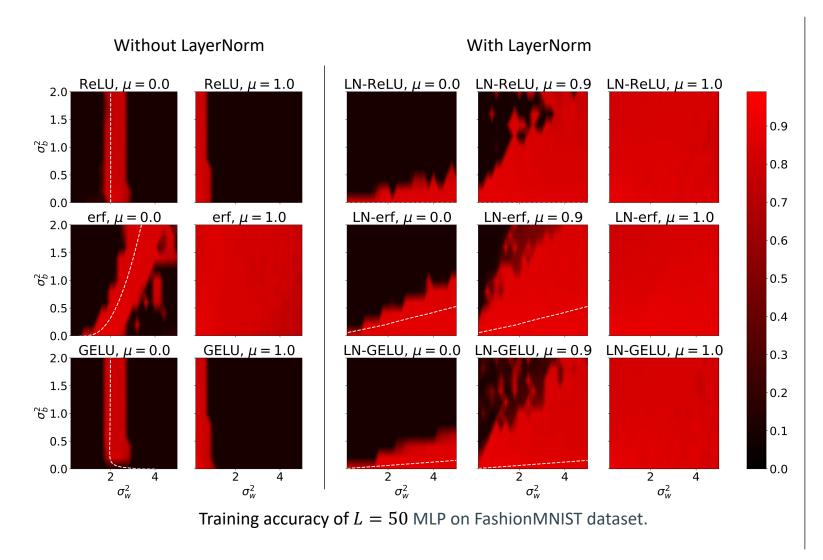


APJN Phase Diagrams



- For real, finite width networks, we use numerical estimates for APJN; utilizing backward pass.
- Networks with **pre**-LayerNorm and $\mu = 1$ are **everywhere critical**! In this case, $\mathcal{J}^{l_0,l} \sim l^{-\zeta}$ where ζ depends on σ_w, σ_b .
- Bounded activations, with $\mu = 1$ without LayerNorm are **semi-critical**. In this case, $\mathcal{J}^{l_0,l} \sim e^{\sqrt{l/\lambda}}$, where λ depends on σ_w, σ_b .

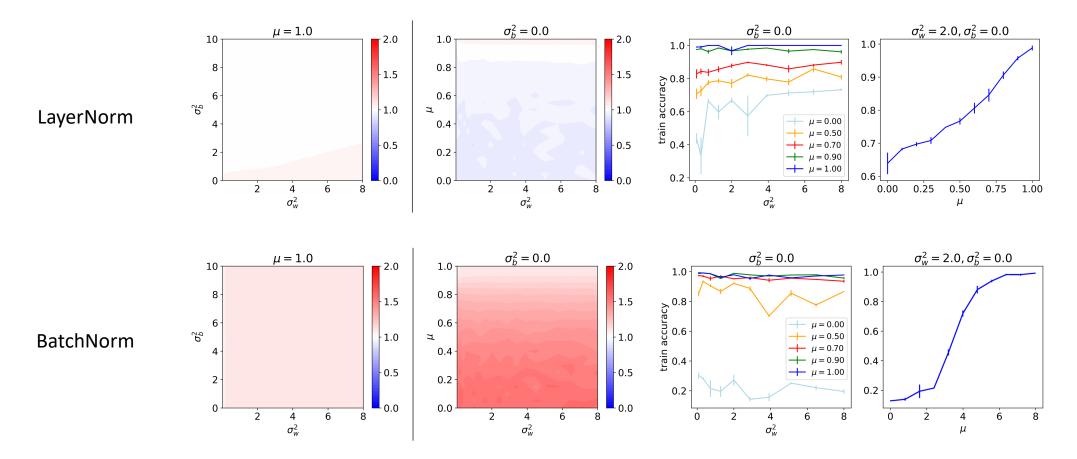
Training Results



- Training results are in excellent agreement with APJN phase diagrams.
- Networks with Pre-LayerNorm and μ = 1 are, in fact, everywhere trainable!
- Network with erf, $\mu = 1$ and no LayerNorm has enhanced trainability.

ResNet110 V2

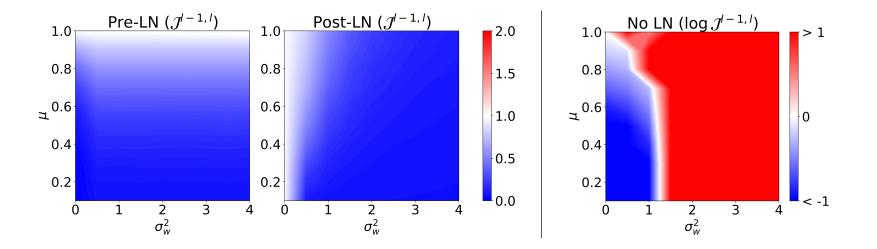
 $\mathcal{J}^{l-1,l}$ phase diagrams for $(\sigma_w - \sigma_b)$ and $(\sigma_w - \mu)$; training accuracies on CIFAR10.



- In both cases, the architecture is everywhere-critical with $\mu = 1$.
- $\mu < 1$ cases are drastically different for LayerNorm and BatchNorm.

Vision Transformer

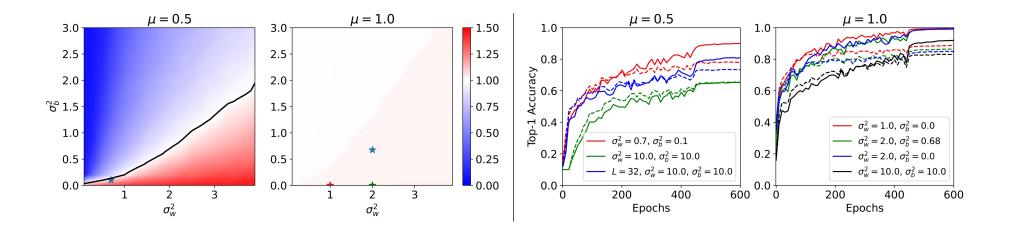
 $\mathcal{J}^{l-1,l}$ phase diagrams for $(\sigma_w - \mu)$, with pre-LN, post-LN and no LN.



- In the pre-LN case, $\mu = 1.0$ is *everywhere-critical*.
- Post-LN and no LN cases do not feature everywhere-criticality.
- The advantage of Pre-LN Transformer is empirically known in literature.

MLP-Mixer

 $\mathcal{J}^{l-1,l}$ phase diagrams for $\mu = 1.0$ and $\mu = 0.5$; training accuracies on CIFAR10.



• $\mu = 1.0$ case is *everywhere-critical*; while $\mu = 0.5$ is not.

• As a result, $\mu = 1.0$ trained well for all initializations; whereas $\mu = 0.5$ deteriorates far from the critical line.

Thank you!

Questions + comments?

