
Critical Initialization of Wide and Deep Neural
Networks using Partial Jacobians

Darshil Doshi, Tianyu He, Andrey Gromov

Paper GitHub

Overview

Key Contributions:

1. Novel diagnostic for critical initialization, Averaged Partial Jacobian Norm (APJN), that is..
• applicable to general feedforward architectures (Transformers, CNNs, MLPs etc.)
• numerically cheap to estimate
• analytically sound; equivalent to known theoretical measures

2. Identification and analysis of everywhere-critical architectures:
• Architectures can be designed to be critical regardless of their initialization, by using specific combinations of

normalization layers and residual connections

Deep neural networks need to be initialized at “criticality” to avoid exploding/vanishing gradients and ensure non-
exponential scaling with depth.

ℎ!ℎ!"#
Conv

Batch
Norm

ReLU

ℎ!"#

Conv
Batch
Norm

ResNet(V2) Vision Transformer

ℎ!ℎ𝑙−1 Atten-
tion MLPLN LN

	 ×𝐿 	 ×𝐿

Signal Propagation

⋯ ⋯ ℎ!= outputinput

𝜵"'ℒ𝜵"(ℒ 𝜵")ℒ 𝜵"*ℒ
⋯⋯

ℒ

𝜵"*+(ℒ

ℎ# ℎ$ ℎ% ℎ!&#

𝒉!"# = 𝑾!"#𝜙 %𝒉! + 𝒃!"# + 𝜇𝒉!

𝜃!"# 	≔ 	𝑊$%
!"#~𝒩 0, ⁄𝜎&' 𝑁! ; 	 𝑏$!"#~𝒩 0, 𝜎(' 	

ℎ$!~𝒩 0,𝒦!

𝑁! → ∞ℎ%ℎ%&# LN

𝜇ℎ%&#

&ℎ%&# 𝜙
𝜙 &ℎ%&#

FC

Critical Initializtion
To analyse the behaviour of gradients, we define APJN:

𝒥!',! ≔ 𝔼* <𝜵𝒉('𝒉
!
,
' 𝑁!

Gradients scale depends on scaling of APJN 𝒥!,-

𝜵*(ℒ = 𝜵.)ℒ 𝜵.(ℎ
- 𝜵*(ℎ

!

𝜵*(ℒ
'
≈ 𝑂 𝜵𝒉)ℒ

'
A 𝒥!,- A 𝒦!

In the limit 𝑁! → ∞, APJN can be written as a product of
layer-to-layer APJNs:

𝒥!',! = 𝒥!',!'"#	𝒥!'"#,!'"'⋯𝒥!/#,!	

𝒥!/#,!	only depends on 𝜎&' , 𝜎(', 𝜙 and 𝜇.

To avoid exploding/vanishing gradients, we want 𝒥!',! to behave
non-exponentially with 𝑙. This can be achieved by:

D𝒥!/#,!
!→2

= 1

This gives us the critical line in the 𝜎& − 𝜎(plane.

Without LayerNorm, demanding non-exponential behaviour of
𝒦! gives us the critical point in the 𝜎& − 𝜎(plane.

At the critical point, 𝒥!',! scales algebraically with 𝑙 : 𝒥!',!~𝑙/3

𝒥%&#,% phase diagrams of MLP ReLU, erf and GELU activations

• For real, finite width networks, we use
numerical estimates for APJN; utilizing
backward pass.

• Networks with pre-LayerNorm and 𝜇 = 1
are everywhere critical!
In this case, 𝒥𝑙0,𝑙~𝑙−𝜁 where 𝜁 depends on
𝜎𝑤, 𝜎𝑏.

• Bounded activations, with 𝜇 = 1 without
LayerNorm are semi-critical.
In this case, 𝒥𝑙0,𝑙~𝑒 ⁄𝑙 𝜆, where 𝜆 depends
on 𝜎𝑤, 𝜎𝑏.

APJN Phase Diagrams
Without LayerNorm With LayerNorm

Training Results

Training accuracy of 𝐿 = 50 MLP on FashionMNIST dataset.

• Training results are in excellent
agreement with APJN phase
diagrams.

• Networks with Pre-LayerNorm and
𝜇 = 1 are, in fact, everywhere
trainable!

• Network with erf, 𝜇 = 1 and no
LayerNorm has enhanced trainability.

Without LayerNorm With LayerNorm

ResNet110 V2

LayerNorm

BatchNorm

• In both cases, the architecture is everywhere-critical with 𝜇 = 1.
• 𝜇 < 1 cases are drastically different for LayerNorm and BatchNorm.

𝒥!/#,! phase diagrams for 𝜎& − 𝜎(and 𝜎& − 𝜇 ; training accuracies on CIFAR10.

Vision Transformer
𝒥!/#,! phase diagrams for 𝜎& − 𝜇 , with pre-LN, post-LN and no LN.

• In the pre-LN case, 𝜇 = 1.0 is everywhere-critical.
• Post-LN and no LN cases do not feature everywhere-criticality.
• The advantage of Pre-LN Transformer is empirically known in literature.

Xiong et al. “On Layer Normalization in the Transformer Architectures”. (2020)

MLP-Mixer
𝒥!/#,! phase diagrams for 𝜇 = 1.0 and 𝜇 = 0.5; training accuracies on CIFAR10.

• 𝜇 = 1.0 case is everywhere-critical; while 𝜇 = 0.5 is not.
• As a result, 𝜇 = 1.0 trained well for all initializations; whereas 𝜇 = 0.5 deteriorates far from the critical line.

Thank you!

Questions + comments?

Paper GitHub Email Darshil

