

Kullback-Leibler Maillard Sampling for Multi-

armed Bandits with Bounded Rewards

Hao Qin

Kwang-Sung Jun

Chicheng Zhang

University of Arizona hqin@math.arizona.edu University of Arizona kjun@cs.arizona.edu University of Arizona chichengz@cs.arizona.edu

Bandit Problem

• Bandit problem have been applied in many online applications.

Online advertisement

How to select the most appealing website layout for online advertising?

Bandit Problem

• Offline policy evaluation

New policy A

I'd like to evaluate the effectiveness of the new policy A without disrupting the actual workflow in a real-world environment

Bandit Problem

• Offline policy evaluation

Let's assess the new policy using the interaction history data to avoid any disruption to the actual workflow.

Problem setting

- *K*-arm bandits
- Each arm a is associated with a Bernoulli distribution with unknown mean $\mu_a \in [0,1]$

Problem setting

•	<i>K</i> -arm	bandits
---	---------------	---------

- Each arm a is associated with a Bernoulli distribution with unknown mean $\mu_a \in [0,1]$
- *T* is the time horizon
- arm 1 Record the arm pulling a_t
 - Record the returned reward r_t
 - Pull one arm and suffer a suboptimality:

```
\max_{a \in [K]} \mu_a - \mu_{a_t} =: \Delta_{a_t}
```

$$\operatorname{rrm}_{3} \bullet \operatorname{Regret}(\mathbf{T}) = \sum_{t=1}^{T} \Delta_{a_t}$$

Regret measurement

From an asymptotic perspective:

• Asymptotic optimality for Bernoulli Distribution[Lai & Robbins, 1985]:

$$\liminf_{T \to \infty} \frac{\operatorname{Regret}(T)}{\ln(T)} = \sum_{a:\Delta_a > 0} \frac{\Delta_a}{kl(\mu_a, \mu^*)}, \ \mu^* \text{ is the optimal reward}$$

In a finite-time regime:

• Minimax Ratio for K-armed bandit [P. Auer et al., 2002][J. Y. Audibert et al., 2009]:

$$\frac{\text{Regret}(T)}{\sqrt{KT}} = f(K,T), \ O(\sqrt{KT}) \text{ is the minimax optimal}$$

• Sub-UCB criteria [Lattimore, 2018]:

Regret(T)
$$\leq O\left(\sum_{a:\Delta_a>0} \Delta_a + \sum_{a:\Delta_a>0} \frac{\ln(T)}{\Delta_a}\right)$$

Prior works

Algorithm & Analysis	Asymptotic Optimality	Minimax Ratio	Sub-UCB	Closed-form Sampling dist.
TS [S. Agrawal et al, 2013] ExpTS [T. Jin et al, 2022]	Yes	$\sqrt{\ln(K)}$	Yes	No
ExpTS+ [T. Jin et al, 2022]	Yes	1	No	No
KL-UCB++ [P. Menard, A. Garivier, 2017] KL-UCB-Switch [A. Garivier et al., 2022]	Yes	1	N/A**	N/A (Deterministic)
MED [J. Honda, A. Takemura, 2011]	Yes	N/A	N/A	Yes
MS [B. Jie, K. Jun, 2021][O. A. Maillard, 2013]	No	$\sqrt{\ln(T)}$	Yes	Yes
KL-MS	Yes	$\sqrt{\ln(K)}$	Yes	Yes

**: we conjecture that the answer is no.

Algorithm design

The sampling probability distribution $p_{t,a}$:

 $p_{t,a} \propto \exp\left(-N_{t-1,a} \cdot \operatorname{kl}(\hat{\mu}_{t-1,a}, \hat{\mu}_{t-1,\max})\right)$

- kl(μ_1 , μ_2) denotes the binary KL divergence to measure the distance between the sample arm and the empirical best arm. (kl(μ_1 , μ_2) := $\mu_1 \ln \frac{\mu_1}{\mu_2} + (1 - \mu_1) \ln \frac{1 - \mu_1}{1 - \mu_2}$)
- $N_{t-1,a}$ is the number of arm *a* been pulled up to time t-1.
- $\hat{\mu}_{t-1,a}$ is the empirical mean of arm a up to time t-1.
- $\hat{\mu}_{t-1,\max}$ is the best empirical mean up to time t-1.

Conclusion

• KL-MS satisfies asymptotically optimality, better minimax ratio, and sub-UCB criterion.

- KL-MS has an adaptive worst-case regret bound $\sqrt{\mu^*(1-\mu^*)KT \ln(K)}$
- KL-MS has an unbiased estimation in the offline evaluation.

Thank You