

Boosting Spectral Clustering on Incomplete Data via Kernel Correction and Affinity Learning

Fangchen Yu¹, Runze Zhao¹, Zhan Shi¹, Yiwen Lu¹ Jicong Fan^{1,2}, Yicheng Zeng², Jianfeng Mao^{1,2}, Wenye Li^{1,2}(E)

¹The Chinese University of Hong Kong, Shenzhen, China ²Shenzhen Research Institute of Big Data, Shenzhen, China

37th Conference on Neural Information Processing Systems

December 10-16, 2023

Outline

Introduction

2 Related Work

3 Methodology

- Kernel Correction Algorithm
- Kernel Self-expressive Learning Algorithms

4 Experiments

- Performance on Kernel Estimation
- Performance on Standard Spectral Clustering
- Performance on Self-expressive Affinity Learning

5 Conclusion

1. Introduction: Spectral Clustering on Incomplete Data

- **Spectral Clustering**'s performance highly relies on the quality of the similarity matrix, such as the kernel matrix and affinity matrix.
 - Step 1. Construct A Similarity Matrix: S = K or C
 - Calculate a (Gaussian) kernel $K \in \mathbb{R}^{n \times n}$ from $X \in \mathbb{R}^{d \times n}$.
 - Learn a self-expressive affinity matrix $C \in \mathbb{R}^{n \times n}$ from K.

Step 2. Perform Normalized Cut Algorithm [1]

• Incomplete Data with missing values is commonly seen in real-life.

Research Question is how to estimate a high-quality kernel or affinity matrix for incomplete data, benefiting spectral clustering tasks.

< 同 > < 回 > < 回 >

2. Related Work

Traditional methods to deal with incomplete data:

- Data Imputation: to impute missing values with estimated values.
 - Statistical imputation: zero, mean, kNN, regression, ...
 - Matrix completion: e.g., min $||UV^{\top} X||$
- Distance Calibration: to calibrate a non-metric distance to a metric.
- Limitation: no guarantee on the quality of the kernel matrix.

Research Goal is to propose new imputation-free algorithms based on properties of kernel matrices with a theoretical guarantee.

3.1 Kernel Correction Algorithm

Motivation:

• A valid kernel is a symmetric matrix being positive semi-definite [2].

Formulation:

- Estimation: estimate a naive kernel K^0 on incomplete data [3].
- Optimization: $\min_{K \in \mathbb{R}^{n \times n}} \|K K^0\|_F^2 \text{ s.t. } K \succeq 0, \ k_{ij} = k_{ji} \in [0, 1], \ \forall \ i, j$
- Obtain the solution \hat{K} by Dykstra's projection algorithm [4].

Guarantee:

• $\|K^* - \hat{K}\|_F \le \|K^* - K^0\|_F$, where K^* is the unknown ground-truth.

ABAABA B SQQ

3.2 Kernel Self-expressive Learning Algorithms

- Kernel Self-expressive Learning with Schatten p-norm (KSL-Sp)
 - Schatten *p*-norm: $\|C\|_{S_p} := (\sum_{i=1}^n \sigma_i^p(C))^{1/p}$ with flexible sparsity.

 $\min_{\boldsymbol{\mathcal{C}}\in\mathbb{R}^{n\times n}} \|\phi(\boldsymbol{X})-\phi(\boldsymbol{\mathcal{X}})\boldsymbol{\mathcal{C}}\|_{F}^{2}+\lambda\|\boldsymbol{\mathcal{C}}\|_{\boldsymbol{S}_{p}}, \ s.t. \ 0\leq c_{ij}\leq 1, \ \forall 1\leq i,j\leq n.$

- Adaptive Kernel Least-Squares Representation (AKLSR)
 - Learn kernel and affinity matrices iteratively via KLSR and KC:

 $\min_{K \succeq 0, C} \|K - K^0\|_F^2 + \operatorname{Tr}(K - 2KC + C^\top KC) + \lambda \|C\|_F^2.$

Solve it by ADMM [5] based on the augmented Lagrange function.

6/12

4.1 Performance on Kernel Estimation

How to estimate a kernel matrix for incomplete data?

- Data imputation: $X^0 \stackrel{\text{impute}}{\longrightarrow} \hat{X} \to \hat{K}$
- Distance calibration: $X^0 o D^0 \stackrel{\text{calibrate}}{\longrightarrow} \hat{D} o \hat{K}$
- Kernel correction: $X^0 \to K^0 \stackrel{\text{correct}}{\longrightarrow} \hat{K}$

Evaluation metrics:

- Relative error ($\mathbf{RE} = \frac{\|\hat{K} K^*\|_F}{\|K^*\|_F}$): measures the accuracy of estimation.
- Recall: measures the accuracy of top-10 nearest neighbors.

Table 1: Gaussian kernel estimation on the Yale64 dataset under a missing ratio 80%.

Metric	Naive	ZERO	MEAN	<i>k</i> NN	EM	SVT	GR	KFMC	DC	TRF	EE	KC
RE↓	0.113	0.382	0.195	0.381	0.195	0.380	0.376	0.335	0.180	0.112	0.097	0.089
Recall↑	0.721	0.063	0.275	0.063	0.275	0.066	0.070	0.183	0.571	0.722	0.751	0.767

Our KC method achieves the smallest estimation error and the highest Recall with improved local relationships, which in turn benefits spectral clustering.

4.2 Performance on Standard Spectral Clustering

- Values of X^0 are missing completely at random.
- Use the estimated Gaussian kernel as the input of normalized cut algorithm.
- Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI)

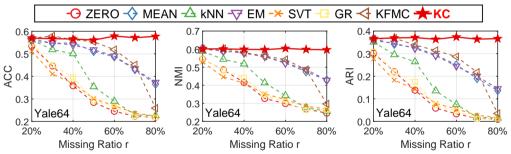


Figure 1: Robustness analysis of standard spectral clustering on the Yale64 dataset.

Our KC method maintains consistent and superior performance even with large missingness.

4.3 Performance on Self-expressive Affinity Learning

Use the learned affinity matrix as the input of normalized cut algorithm.

- KSSC [6]: $\min_{C} \|\phi(X) \phi(X)C\|_{F}^{2} + \lambda \|C\|_{1}$
- KLSR [7]: $\min_{C} \|\phi(X) \phi(X)C\|_{F}^{2} + \lambda \|C\|_{F}^{2}$
- KSL-Sp: $\min_C \|\phi(X) \phi(X)C\|_F^2 + \lambda \|C\|_{S_p}$
- **AKLSR**: $\min_{K \succeq 0, C} \|K K^0\|_F^2 + \operatorname{Tr}(K 2KC + C^\top KC) + \lambda \|C\|_F^2$

Table 2: NMI performance of self-expressive affinity on Yale64 dataset under a missing ratio 80%.

Method	Naive	ZERO	MEAN	<i>k</i> NN	EM	SVT	GR	KFMC	DC	TRF	EE	KC
KSSC	0.219	0.215	0.167	0.173	0.177	0.218	0.208	0.259	0.588	0.210	0.209	0.616
KLSR	0.606	0.311	0.604	0.320	0.609	0.321	0.327	0.318	0.597	0.603	0.604	0.616
KSL-Sp	0.370	0.315	0.581	0.303	0.579	0.305	0.304	0.295	0.555	0.364	0.599	0.619
AKLSR	0.452	0.327	0.606	0.338	0.605	0.308	0.338	0.312	0.570	0.464	0.575	0.614

Both KSL-Sp and AKLSR algorithms employ corrected kernels to yield dependable affinity matrices, thereby elevating spectral clustering performance.

Fangchen Yu, et al. (CUHKSZ)

スタン イモン イモ

How to boost spectral clustering on incomplete data?

- Proposed an imputation-free framework:
- Learned a high-quality kernel matrix by the kernel correction algorithm.
- Learned a high-quality *affinity* matrix by the kernel self-expressive affinity learning algorithms.
- Experiments show the effectiveness of kernel correction method, compared to existing data imputation and distance calibration approaches.

→

10/12

More Information

- Codes are available at https://github.com/SciYu/Spectral-Clustering-on-Incomplete-Data.
- Welcome to visit the homepage and explore potential collaborations in the future.

References

- [1] Andrew Ng, Michael Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: *Advances in Neural Information Processing Systems* 14 (2001).
- [2] Rafic Nader et al. "On the positive semi-definite property of similarity matrices". In: *Theoretical Computer Science* 755 (2019), pp. 13–28.
- [3] Fangchen Yu et al. "Online estimation of similarity matrices with incomplete data". In: Uncertainty in Artificial Intelligence. PMLR. 2023, pp. 2454–2464.
- [4] Heinz H Bauschke and Jonathan M Borwein. "Dykstra's alternating projection algorithm for two sets". In: Journal of Approximation Theory 79.3 (1994), pp. 418–443.
- [5] Stephen Boyd et al. "Distributed optimization and statistical learning via the alternating direction method of multipliers". In: *Foundations and Trends in Machine learning* 3.1 (2011), pp. 1–122.
- [6] Vishal M Patel and René Vidal. "Kernel sparse subspace clustering". In: 2014 IEEE International Conference on Image Processing. IEEE. 2014, pp. 2849–2853.
- [7] Jicong Fan et al. "A simple approach to automated spectral clustering". In: Advances in Neural Information Processing Systems 35 (2022), pp. 9907–9921.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()