

1

Hierarchical Multi-Agent Skill Discovery

Mingyu Yang, Yaodong Yang, Zhenbo Lu, Wengang Zhou, Houqiang Li

NeurIPS 2023

Background

• MARL has recently shown remarkable potential in various real-world problems

- However, current MARL algorithms (e.g., QMIX and MAPPO) typically reply on well-crafted team or individual rewards
- In this work, we focus on sparse reward multi-agent problems

Motivation

• Discover underlying skills within the multi-agent task and effectively combine these skills

to achieve the final goal

- Two problems:
 - ➢ how to simultaneously learn team skill and individual skill
 - ➢ how to combine these skills to accomplish multi-agent tasks

Multi-Agent Skill Discovery Problem Formulation

• We embed multi-agent skill discovery problem into a probabilistic graphical model

- ✓ O_t is a binary random variable, where $O_t = 1$ denotes timestep
 - t is optimal, and $\mathcal{O}_t = 0$ indicates timestep t is not optimal
- \checkmark team skill Z is conditioned on the global state s_t
- ✓ individual skill z^i is conditioned on both the team skill Z and agent g^i 's partial observation o_t^i
- We then perform structured variational inference to derive our objective

$$\log p(\mathcal{O}_{0:T}) \geq \mathbb{E}_{\tau \sim q(\tau)} \Big[\sum_{t=0}^{T} \Big(r(s_t, \boldsymbol{a}_t) + \underbrace{\log p(Z|s_t) + \sum_{i=1}^{n} \log p(z^i|o_t^i, Z)}_{\text{diversity term}} - \underbrace{\log q(Z|s_t) - \sum_{i=1}^{n} \log q(z^i|o_t^i, Z)}_{\text{skill entropy term}} - \underbrace{\sum_{i=1}^{n} \log q(a_t^i|o_t^i, Z)}_{\text{action entropy term}} \Big) \Big],$$

NEURAL INFORMATION PROCESSING SYSTEMS

Method

- To optimize the derived lower bound, we utilize four approximate functions and integrate them into a two-level hierarchical structure
 - high-level skill coordinator

 $\pi_h(Z, z^{1:n} | s_t, \boldsymbol{o}_t) \rightarrow q(Z|s_t), q(z^i | o_t^i, Z)$

Iow-level skill discoverer

$$\pi_l(a_t^i|o_t^i, z^i) \to q(a_t^i|o_t^i, z^i)$$

➤ team skill discriminator

$$q_D(Z|s_t) \to p(Z|s_t)$$

➢ individual skill discriminator

$$q_d(z^i | o_t^i, Z) \rightarrow p(z^i | o_t^i, Z)$$

Method

• The Overall Framework

Method

- Overall Training
 - ► reward for high-level policy: $r_t^h = \sum_{p=0}^{k-1} r_{t+p}$
 - $\succ \text{ reward for low-level policy: } r_t^i = \lambda_e r_t + \lambda_D \log q_D(Z|s_{t+1}) + \lambda_d \log q_d(z^i|o_{t+1}^i, Z)$
 - > we adopt the popular PPO objective to optimize both the high-level and low-level policy

$$\log p(\mathcal{O}_{0:T}) \geq \mathbb{E}_{\tau \sim q(\tau)} \left[\sum_{t=0}^{T} \left(r(s_t, \boldsymbol{a}_t) + \underbrace{\log p(Z|s_t) + \sum_{i=1}^{n} \log p(z^i|o_t^i, Z)}_{\text{diversity term}} \right) \text{ used as intrinsic reward for both high-level policy} \\ \log q(Z|s_t) - \sum_{i=1}^{n} \log q(z^i|o_t^i, Z) - \underbrace{\sum_{i=1}^{n} \log q(a_t^i|o_t^i, z^i)}_{\text{action entropy term}} \right) \right],$$

➤ the skill discriminator is trained in a supervised manner with cross-entropy loss $\mathcal{L}_d(\phi_D, \phi_d) = -\mathbb{E}_{(s,Z)\sim\mathcal{D}}\left[\log q_D(Z|s)\right] - \sum_{i=1}^n \mathbb{E}_{(o^i,Z,z^i)\sim\mathcal{D}}\left[\log q_d(z^i|o^i,Z)\right],$

Experiments

• Case Study

 \blacktriangleright two team skills Z = 0,1 correspond to collecting the blue diamond and red diamond for the whole team

> four individual skills $z^i = 0, 1, 2, 3$ guide the individual agent to reach the red diamond, red button,

blue diamond and blue button

Experiments

• Performance on SMAC with 0-1 reward and Overcooked

