Stability of Random Forests and Coverage of **Random-Forest Prediction Intervals**

Yan Wang, wangyan@wayne.edu; Huaiqing Wu, isuhw@iastate.edu; Dan Nettleton, dnett@iastate.edu This research was supported in part by the US National Science Foundation under grant HDR:TRIPODS 19-34884.

Take-home message

Random Forests is a provably stable algorithm under mild conditions. One can use the out-of-bag error of Random Forests to construct prediction intervals with guaranteed non-asymptotic coverage. Running Random Forests once, one can not only obtain a point predictor, but also a justified prediction interval for a future test point.

Summary of results

Random Forests (RF) is a popular machine learning algorithm. However, not much is known about its theoretical properties.

- We prove the RF is stable under the mild condition that the squared response Y^2 is not heavy-tailed distributed.
- Our theoretical results hold for the practical version of the RF such as randomForest in R.
- Primarily based on the stability property, we provide non-asymptotic (and asymptotic) coverage guarantees of prediction intervals constructed from the out-of-bag (OOB) error of the RF.
- RF prediction intervals can be constructed almost without additional computation.

Prediction interval construction methods

Conformal prediction (CP) provides theoretically justified prediction intervals for almost all machine learning algorithms in practice.

- Full CP [1]: any algorithm, distribution-free, but computationally prohibitive
- Split CP [2]: any algorithm, distribution-free, but inefficient data usage
- Jackknife+ [3]: any algorithm, distribution-free, efficient data usage, but computational cost can still be high for modern learning algorithms
- Jackknife+-after-bootstrap [4]: any algorithm, distribution-free, efficient data usage, but the number of bags *B* is random without stability assumptions and needs to aggregate base learners
- **Ours** [5]: RF only, mild distributional assumptions, efficient data usage, negligible additional computational cost, no need to aggregate tree predictors
- All methods have non-asymptotic coverage guarantees. Our method is based on the stability of bagged algorithms established in Ref. [6].

Stability of Random Forests (in theory)

• Stability of derandomized RF (Number of trees $B = \infty$)

 $P(|\mathrm{rf}(X) - \mathrm{rf}^{i}(X)| > \varepsilon_2) \le \nu_2$

Step 1: Conditional on training data, all tree predictors output bounded predictive values, and Theorem 8 in Ref. [6] applies.

- <u>Step 2</u>: $P(\cdot) = E[P(\cdot | \text{training data})]$
- Concentration of (resampling) measure

 $P(|\mathrm{rf}(X) - \mathrm{RF}(X)| > \varepsilon_1) \le \nu_1$

$$P(|\mathsf{RF}^{i}(X) - \mathsf{rf}^{i}(X)| > \varepsilon_3) \le \nu_3$$

• Stability of RF (**Theorem 8**): The union bound gives

$$P(|\operatorname{RF}(X) - \operatorname{RF}^{i}(X)| > \varepsilon) \le \nu$$

• Both ε and ν approach 0 for non-heavy-tailed Y^2 as $n, B \to \infty$. (Theoretically proved for sub-gamma Y^2 .)

Comparison of prediction intervals using Random Forests

Method	Output predictors	Prediction interval for future Y	Theoretical coverage	Conditions beyond IID data
Jackknife+ [3]	RF^{-i} , $i \in [n]$	$\left[q_{n,\alpha}^{-}\left\{RF^{-i}(X) - R_{i}^{LOO}\right\}, q_{n,\alpha}^{+}\left\{RF^{-i}(X) + R_{i}^{LOO}\right\}\right]$	$\geq 1 - 2\alpha$	None
Jackknife+-after- bootstrap [4]	$\mathrm{RF}^{\setminus i}$, $i \in [n]$	$\left[q_{n,\alpha}^{-}\left\{RF^{i}(X)-R_{i}\right\},q_{n,\alpha}^{+}\left\{RF^{i}(X)+R_{i}\right\}\right]$	$\geq 1 - 2\alpha$	Binomial number of tress
Jackknife with stability [3]	RF and RF ^{$-i$} , $i \in [n]$	$\operatorname{RF}(X) \pm q_{n,\alpha} \{ R_i^{\operatorname{LOO}} + \varepsilon \}$	$\geq 1 - \alpha - O(\sqrt{\nu})$	Stability (algorithmic)
Jackknife+-after- bootstrap with stability [4]	$\mathrm{RF}^{\setminus i}$, $i \in [n]$	$\left[q_{n,\alpha}^{-}\left\{\mathrm{RF}^{i}(X)-R_{i}\right\}-\varepsilon,q_{n,\alpha}^{+}\left\{\mathrm{RF}^{i}(X)+R_{i}\right\}+\varepsilon\right]$	$\geq 1 - \alpha - O(\sqrt{\nu})$	Stability (algorithmic + ensemble)
Jackknife-after-bootstrap [7,8]	RF	$RF(X) \pm q_{n,\alpha}\{R_i\} [7]$	No guarantee provided	_
		$RF(X) \pm q'_{n,\alpha} \{R_i\}$ [8]	$\rightarrow 1 - \alpha$	Additive model, consistency of RF, etc.
Ours [5] (Jackknife-after- bootstrap with stability)	RF	$\operatorname{RF}(X) \pm q_{n,\alpha} \{R_i + \varepsilon\}$	$\geq 1 - \alpha - O(\sqrt{\nu})$	Stability (Theorem 9)
		$\operatorname{RF}(X) \pm q_{n,\alpha} \{R_i - \varepsilon\}$	$\leq 1 - \alpha + \frac{1}{n+1} + O(\sqrt{\nu})$	+ Distinct residuals (Theorem 10)
		$\operatorname{RF}(X) \pm q_{n,\alpha}\{R_i\}$	$\rightarrow 1 - \alpha$	+ Uniformly equicontinuous CDF of prediction error and vanishing ε , ν (Theorem 11)

- RF^{-i} : Leave-one-out (LOO) RF predictor; RF^{i} : OOB RF predictor
- $R_i^{\text{LOO}} = |Y_i RF^{-i}(X_i)|$: LOO error; $R_i = |Y_i RF^{i}(X_i)|$: OOB error
- Note $RF^{i}(X_{i})$ can be obtained *directly* using packages like randomForest
- $q_{n,\alpha}^-$: the $\lfloor (n+1)\alpha \rfloor$ -th smallest value
- $q_{n,\alpha}^+$: the $[(n+1)(1-\alpha)]$ -th smallest value
- $q_{n,\alpha} = q_{n,\alpha}^+; q'_{n,\alpha}$: the $[n(1-\alpha)]$ -th smallest value
- (ε, ν) : a pair of stability parameters with $P(|f(X) f_i(X)| > \varepsilon) \le \nu$, where f_i is either the LOO or OOB predictor

Stability of Random Forests (in practice)

Example: Create a virtual dataset with 3000 training data points and 1000 test points, where Y follows the standard Cauchy distribution. Set B = 1000. • Left: Density plot of $\log_{10}(|RF(X) - RF^{i}(X)|)$, $i \in [3000]$ • Right: Density plot of $\log_{10}(|Y - RF(X)|)$ and $\log_{10}(|Y_i - RF^{i}(X_i)|)$

RF stability persists even if the light-tail assumption is violated, implying the theoretical bound is not necessarily tight.

References

- [1] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world, Springer, 2005.
- [2] J. Lei, et al. Distribution-free predictive inference for regression. JASA, 2018.
- [3] R. F. Barber, et al. Predictive inference with the jackknife+. AoS, 2021.
- [4] B. Kim, C. Xu, and R. F. Barber. Predictive inference is free with the jackknife+-after-bootstrap. NeurIPS, 2020.
- [5] Y. Wang, H. Wu, and D. Nettleton. Statbility of random forests and coverage of random-forest prediction intervals. NeurIPS, 2023.
- [6] J. A. Soloff, R. F. Barber, and R. Willett. Bagging provides assumption-free stability. arXiv:2301.12600.
- [7] U. Johansson, et al. Regression conformal prediction with random forests. Machine Learning, 2014.
- [8] H. Zhang, *et al*. Random forest prediction intervals. The American Statistician, 2019.