
Stability of Random Forests and Coverage of 
Random-Forest Prediction Intervals

Summary of results
Random Forests (RF) is a popular machine learning algorithm. However, 
not much is known about its theoretical properties.

• We prove the RF is stable under the mild condition that the squared 
response 𝑌𝑌2 is not heavy-tailed distributed.

• Our theoretical results hold for the practical version of the RF such as 
randomForest in R.

• Primarily based on the stability property, we provide non-asymptotic 
(and asymptotic) coverage guarantees of prediction intervals 
constructed from the out-of-bag (OOB) error of the RF.

• RF prediction intervals can be constructed almost without additional 
computation.

Stability of Random Forests (in theory)

Prediction interval construction methods
Conformal prediction (CP) provides theoretically justified prediction intervals 
for almost all machine learning algorithms in practice.

• Full CP [1]: any algorithm, distribution-free, but computationally 
prohibitive

• Split CP [2]: any algorithm, distribution-free, but inefficient data usage
• Jackknife+ [3]: any algorithm, distribution-free, efficient data usage, but 

computational cost can still be high for modern learning algorithms
• Jackknife+-after-bootstrap [4]: any algorithm, distribution-free, efficient 

data usage, but the number of bags 𝐵𝐵 is random without stability 
assumptions and needs to aggregate base learners

• Ours [5]: RF only, mild distributional assumptions, efficient data usage, 
negligible additional computational cost, no need to aggregate tree 
predictors

• All methods have non-asymptotic coverage guarantees. Our method is 
based on the stability of bagged algorithms established in Ref. [6].
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Jackknife+ [3] RF−𝑖𝑖 , 𝑖𝑖 ∈ [𝑛𝑛] 𝑞𝑞𝑛𝑛,𝛼𝛼
− RF−𝑖𝑖 𝑋𝑋 − 𝑅𝑅𝑖𝑖LOO , 𝑞𝑞𝑛𝑛,𝛼𝛼

+ RF−𝑖𝑖 𝑋𝑋 + 𝑅𝑅𝑖𝑖LOO ≥ 1 − 2𝛼𝛼 None
Jackknife+-after-

bootstrap [4] RF\𝑖𝑖 , 𝑖𝑖 ∈ [𝑛𝑛] 𝑞𝑞𝑛𝑛,𝛼𝛼
− RF\𝑖𝑖 𝑋𝑋 − 𝑅𝑅𝑖𝑖 , 𝑞𝑞𝑛𝑛,𝛼𝛼

+ RF\𝑖𝑖 𝑋𝑋 + 𝑅𝑅𝑖𝑖 ≥ 1 − 2𝛼𝛼 Binomial number of tress

Jackknife with stability [3] RF and RF−𝑖𝑖 , 𝑖𝑖 ∈ [𝑛𝑛] RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼 𝑅𝑅𝑖𝑖LOO + 𝜀𝜀 ≥ 1 − 𝛼𝛼 − 𝑂𝑂( 𝜈𝜈) Stability (algorithmic)
Jackknife+-after-

bootstrap with stability [4] RF\𝑖𝑖 , 𝑖𝑖 ∈ [𝑛𝑛] 𝑞𝑞𝑛𝑛,𝛼𝛼
− RF\𝑖𝑖 𝑋𝑋 − 𝑅𝑅𝑖𝑖 − 𝜀𝜀, 𝑞𝑞𝑛𝑛,𝛼𝛼

+ RF\𝑖𝑖 𝑋𝑋 + 𝑅𝑅𝑖𝑖 + 𝜀𝜀 ≥ 1 − 𝛼𝛼 − 𝑂𝑂( 𝜈𝜈) Stability (algorithmic + ensemble)

Jackknife-after-bootstrap 
[7,8] RF

RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼 𝑅𝑅𝑖𝑖  [7] No guarantee provided -

RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼
′ 𝑅𝑅𝑖𝑖  [8] → 1 − 𝛼𝛼 Additive model, consistency of RF, etc.

Ours [5]
(Jackknife-after-

bootstrap with stability)
RF

RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼 𝑅𝑅𝑖𝑖 + 𝜀𝜀 ≥ 1 − 𝛼𝛼 − 𝑂𝑂( 𝜈𝜈) Stability (Theorem 9)

RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼 𝑅𝑅𝑖𝑖 − 𝜀𝜀 ≤ 1 − 𝛼𝛼 +
1

𝑛𝑛 + 1
+ 𝑂𝑂( 𝜈𝜈) + Distinct residuals (Theorem 10)

RF 𝑋𝑋 ± 𝑞𝑞𝑛𝑛,𝛼𝛼{𝑅𝑅𝑖𝑖} → 1 − 𝛼𝛼 + Uniformly equicontinuous CDF of prediction 
error and vanishing 𝜀𝜀, 𝜈𝜈 (Theorem 11) 

References• RF−𝑖𝑖: Leave-one-out (LOO) RF predictor; RF\𝑖𝑖: OOB RF predictor
• 𝑅𝑅𝑖𝑖LOO = 𝑌𝑌𝑖𝑖 − RF−𝑖𝑖 𝑋𝑋𝑖𝑖 : LOO error; 𝑅𝑅𝑖𝑖 = 𝑌𝑌𝑖𝑖 − RF\𝑖𝑖 𝑋𝑋𝑖𝑖 : OOB error
• Note RF\𝑖𝑖 𝑋𝑋𝑖𝑖  can be obtained directly using packages like randomForest

• 𝑞𝑞𝑛𝑛,𝛼𝛼
− : the 𝑛𝑛 + 1 𝛼𝛼 -th smallest value

• 𝑞𝑞𝑛𝑛,𝛼𝛼
+ : the 𝑛𝑛 + 1 (1 − 𝛼𝛼) -th smallest value

• 𝑞𝑞𝑛𝑛,𝛼𝛼 = 𝑞𝑞𝑛𝑛,𝛼𝛼
+ ; 𝑞𝑞𝑛𝑛,𝛼𝛼

′ : the 𝑛𝑛(1 − 𝛼𝛼) -th smallest value
• (𝜀𝜀, 𝜈𝜈): a pair of stability parameters with 𝑃𝑃 𝑓𝑓 𝑋𝑋 − 𝑓𝑓𝑖𝑖(𝑋𝑋) > 𝜀𝜀 ≤ 𝜈𝜈, where  

𝑓𝑓𝑖𝑖 is either the LOO or OOB predictor

Comparison of prediction intervals using Random Forests 

 Take-home message
 Random Forests is a provably stable algorithm under mild conditions. 

One can use the out-of-bag error of Random Forests to construct 
prediction intervals with guaranteed non-asymptotic coverage. Running 
Random Forests once, one can not only obtain a point predictor, but also 
a justified prediction interval for a future test point.

• Stability of derandomized RF (Number of trees 𝐵𝐵 = ∞)

𝑃𝑃 rf 𝑋𝑋 − rf \𝑖𝑖 𝑋𝑋 > 𝜀𝜀2 ≤ 𝜈𝜈2
 Step 1: Conditional on training data, all tree predictors output bounded 
    predictive values, and Theorem 8 in Ref. [6] applies.
 Step 2: 𝑃𝑃 ⋅ = 𝐸𝐸 𝑃𝑃(⋅ |training data)
• Concentration of (resampling) measure

𝑃𝑃 rf 𝑋𝑋 − RF 𝑋𝑋 > 𝜀𝜀1 ≤ 𝜈𝜈1

𝑃𝑃 RF\𝑖𝑖 𝑋𝑋 − rf \𝑖𝑖 𝑋𝑋 > 𝜀𝜀3 ≤ 𝜈𝜈3
• Stability of RF (Theorem 8): The union bound gives

𝑃𝑃 RF 𝑋𝑋 − RF\𝑖𝑖 𝑋𝑋 > 𝜀𝜀 ≤ 𝜈𝜈

• Both 𝜀𝜀 and 𝜈𝜈 approach 0 for non-heavy-tailed 𝑌𝑌2 as 𝑛𝑛,𝐵𝐵 → ∞. 
(Theoretically proved for sub-gamma 𝑌𝑌2.) 

Stability of Random Forests (in practice)

Example: Create a virtual dataset with 3000 training data points and 1000 
test points, where 𝑌𝑌 follows the standard Cauchy distribution. Set 𝐵𝐵 = 1000.
• Left: Density plot of log10(|𝑅𝑅𝑅𝑅(𝑋𝑋) − 𝑅𝑅𝑅𝑅\𝑖𝑖(𝑋𝑋)|) , 𝑖𝑖 ∈ [3000]
• Right: Density plot of log10(|𝑌𝑌 − 𝑅𝑅𝑅𝑅(𝑋𝑋)|) and log10(|𝑌𝑌𝑖𝑖 − 𝑅𝑅𝑅𝑅\𝑖𝑖(𝑋𝑋𝑖𝑖)|)

RF stability persists even if the light-tail assumption is violated, 
implying the theoretical bound is not necessarily tight.
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