

Robust Model Reasoning and Fitting via Dual Sparsity Pursuit

Xingyu Jiang^{1,2}, Jiayi Ma^{2*}

¹ Huazhong University of Science and Technology ² Wuhan University

Presenter: Xingyu Jiang 2023.11

Background

- Existing Geometric model fitting
 - ✓ RANSAC-like

$$\max_{\substack{\theta, \mathcal{I} \subseteq \mathcal{X} \\ \text{s.t.}}} |\mathcal{I}|$$

s.t. $r(\mathbf{p}_i | \theta) \le \epsilon, \quad \forall \mathbf{p}_i \in \mathcal{I}.$

Parmeters are essentially estimated with DLT solution with 8- or 4-Point Alg. $\min_{\theta} \|\mathbf{M}^{\top}\theta\|_{2}^{2}, \quad s.t. \quad \|\theta\|_{2} = 1,$

 $\checkmark\,$ Global optimization with robust loss

$$\min_{\theta} \|\mathbf{M}^{\top}\theta\|_{1}, \quad s.t. \quad \|\theta\|_{2} = 1.$$

Background

• Geometric Constraints:-- Algebraic form $\mathbf{M}^{\top} \boldsymbol{\theta} = \mathbf{0}$

Data Embedding: $\mathbf{m}_i = \Phi_{\mathcal{M}}(\mathbf{p}_i, \mathbf{p}'_i)$ Ask for predefining Parameter Vector: $\theta = vec(\mathcal{M}) \in \mathbb{R}^D$ the model type ! $F = \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$ $p_i'^\top \mathbf{F} \mathbf{p}_i = 0. \quad \Phi_{\mathbf{F}}(\mathbf{p}_i, \mathbf{p}_i')^\top vec(\mathbf{F}) = 0$ $\Phi_{\mathbf{F}}(\mathbf{p}_i, \mathbf{p}_i')^\top = (u_i'u_i, u_i'v_i, u_i', v_i'u_i, v_i'v_i, v_i, u_i, v_i, 1)$ $H_{A} = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} \mathbf{p}_{i}' = \mathbf{A}\mathbf{p}_{i}, & \Phi_{\mathbf{A}}(\mathbf{p}_{i}, \mathbf{p}_{i}')^{\top} vec(\mathbf{A}) = \mathbf{0} \\ \Phi_{\mathbf{A}}(\mathbf{p}_{i}, \mathbf{p}_{i}')^{\top} = \begin{bmatrix} u_{i} & v_{i} & 1 & 0 & 0 & 0 & -u_{i}' \\ 0 & 0 & 0 & u_{i} & v_{i} & 1 & -v_{i}' \end{bmatrix}$

Motivation & New Insight

Model type varies a lot, and is tricky to predefine

Fundamental Model: F/E

Homography Model: H

• A wrong Model would produce failed estimation

(a) Estimate Homography Model

(b) Estimate Fundamental Model

image 1

image 2

Simultaneously solve:

i) Outlier Rejection, ii) Model Reasoning, iii) Parameter Estimation

Problem Formulation

• Sparse Subspace Recovery (SSR) Theory

Recovering multiple sparse hyperplanes under an over embedded data space

$$\widetilde{\Phi}(\mathbf{p}_i, \mathbf{p}'_i)^{ op} \Psi(\mathcal{M}) = \mathbf{0}, \quad \mathcal{M} \in \{\mathbf{F}, \mathbf{H}, \mathbf{A}\}$$

Common Data Embed. Model Embed.

• *e.g.* Line fitting:

$$\Phi_{Line}(x_i, y_i) = [x_i, y_i, 1]$$

Under SSR :

Over Embedding	$\Phi_{Ellipse}(x_i, y_i)$	=	$[x_i^2, y_i^2, x_i, y_i, 1]^\top$
Sparse Subspace	$\boldsymbol{\theta} = [0, 0, a, b, c]^{\top}$		

	x_i^2	y_i^2	x_i	y_i	1
Line			~	\checkmark	~
Parabola	\checkmark		~	~	~
Ellipse	\checkmark	~	~	~	~

Problem Formulation

• SSR for Two-View Geometry

Pros: Avoid exact data embed., directly obtain model type from solution X

Problem Formulation

Known Model Fitting for Clean Data

$$\min_{\mathbf{X}\in\mathbb{R}^{D\times r}} \|\mathbf{X}\|_{0}, \quad s.t. \quad \mathbf{M}^{\top}\mathbf{X} = \mathbf{0}, \quad \operatorname{rank}(\mathbf{X}) = r,$$

Unknown Model Fitting with Noises G & Outliers E

Gaussian NoiseModel SparsityOutlier EntryBasis Number
$$\uparrow$$
 $\min_{\mathbf{X}, \mathbf{E}, r}$ $\frac{1}{2} \|\mathbf{G}\|_{F}^{2} + \lambda \|\mathbf{X}\|_{0} + \gamma \|\mathbf{E}\|_{2,0} - \tau \operatorname{rank}(\mathbf{X}),$ *s.t.* $\mathbf{M}^{\top}\mathbf{X} - \mathbf{G} - \mathbf{E} = \mathbf{0},$ $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{r \times r},$ Orthogonal Constraint

Solution

• Convex Approximation : $L_0 \rightarrow L_1$

$$\min_{\mathbf{X}, \mathbf{E}, r} \frac{1}{2} \| \mathbf{M}^{\top} \mathbf{X} - \mathbf{E} \|_{F}^{2} + \lambda \| \mathbf{X} \|_{1} + \gamma \| \mathbf{E} \|_{2,1} - \tau \operatorname{rank}(\mathbf{X}),$$

s.t. $\| \mathbf{x}_{i} \|_{2} = 1, \quad \mathbf{x}_{i}^{\top} \mathbf{x}_{j} = 0, \quad \forall i, j = 1, 2, ..., r, \quad i \neq j.$

Problem Conversion

Progressively estimate a **new sparse basis** orthomotric to all given bases **B** up to $\mathcal{L}(\mathbf{M}, \hat{\mathbf{x}}_i, \hat{\mathbf{e}}_i) < \tau$ not holds

$$\min_{\mathbf{x},\mathbf{e}} \mathcal{L}(\mathbf{M},\mathbf{x},\mathbf{e}) = \frac{1}{2} \|\mathbf{M}^{\top}\mathbf{x} - \mathbf{e}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1} + \gamma \|\mathbf{e}\|_{1},$$

s.t. $\|\mathbf{x}\|_{2} = 1, \ \mathbf{x}^{\top}\mathbf{y} = 0, \ \forall \mathbf{y} \in \mathbf{B}.$

Solution: Alternative Optimization

• Given x^{k-1} Update e^k : standard Threshold Shrinkage Operation

$$\mathbf{e}^{k} = \mathbf{M}^{\top} \mathbf{x}^{k-1} - \gamma \operatorname{sgn}(\mathbf{e}^{k}) = \mathcal{T}_{\gamma}(\mathbf{M}^{\top} \mathbf{x}^{k-1})$$
$$\mathcal{T}_{\lambda}(q) = \begin{cases} q - \lambda, & q > \lambda, \\ q + \lambda, & q < -\lambda, \\ 0, & \text{else.} \end{cases}$$

• Given e^k Update x^k :

$$\mathbf{x}^{k} = \arg\min_{\mathbf{x}} \left\{ \frac{L}{2} \| \mathbf{x} - (\mathbf{x}^{k-1} - \frac{1}{L} \nabla f(\mathbf{x}^{k-1})) \|_{2}^{2} + \lambda \| \mathbf{x} \|_{1} \right\},$$
$$\mathbf{x}^{k} = \mathcal{T}_{\frac{\lambda}{L}}(\mathbf{q}_{L}(\mathbf{x}^{k-1})), \quad \mathbf{q}_{L}(\mathbf{x}^{k-1}) = \mathbf{x}^{k-1} - \frac{1}{L} \nabla f(\mathbf{x}^{k-1}).$$

• Constraint Projection:

$$\begin{array}{c} \mathbf{x} \ \leftarrow \ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \\ \text{Sphere Proj.} \end{array} \qquad \bullet \qquad \begin{array}{c} \mathbf{x} \ \leftarrow (\mathbf{I} - \mathbf{B}\mathbf{B}^\top)\mathbf{x} \\ \text{Orthogonal Proj.} \end{array}$$

Implementation

• How to reason out the model type?

Back to our formulation:

$$\widetilde{\Phi}(\mathbf{p}_i, \mathbf{p}'_i)^{\top} \Psi(\mathcal{M}) = \mathbf{0}, \quad \mathcal{M} \in \{\mathbf{F}, \mathbf{H}, \mathbf{A}\}$$

Common Data Embed. Model Embed.

Given the solved X, reason out the model type--based on the Sparsity and Basis Number

Implementation

How to reason out the model type?

Two-view geometry

Experiments

• Model Reasoning on Synthesized Datasets EAS (TPAMI'22) + Selection criteria: AIC BIC GRIC

OR	Data Model	AIC	BIC	GRIC	DSP (ours)
20%	F,100	100	62	100	100
	H,100	100	98	100	100
	A,100	100	96	100	100
50%	F,100	100	0	100	100
	H,100	100	95	100	100
	A,100	99	97	98	100
80%	F,100	85	0	93	100
	H,100	95	96	98	99
	A,100	96	92	95	98
	all	97.2	70.7	98.4	99.7

Select GRIC for Further Comparison

Experiments

Unknown Model Fitting on Real Image Datasets

* indicates using GRIC to select the best model

Data	Aethods	RANSAC*	USAC*	MAGSAC++*	EAS*	OANet*	SuperGlue*	DSP (ours)
Fund.	E_med	0.8478	0.6545	0.6260	0.6900	0.7579	0.8926	0.6017
	Time(s)	0.5666	0.0239	0.3918	0.2037	0.0152	0.0721	0.0551
	FR	0.2925	0.1992	0.2077	0.2142	0.2632	0.2709	0.1136
	E_med	1.0428	0.8744	0.8978	0.8472	0.8480	0.9392	0.8227
Homo.	Time(s)	2.010	0.0550	1.3419	0.4463	0.0342	0.0716	0.2794
	FR	0.3021	0.2604	0.1424	0.0972	0.0903	0.1181	0.066
	E_med	0.8794	0.6711	0.6383	0.7091	0.7670	0.9026	0.6249
All	Time(s)	0.6638	0.0260	0.4558	0.22	0.0130	0.0721	0.0703
	FR	0.2932	0.2043	<u>0.2033</u>	0.2064	0.2515	0.2606	0.1123

Best Accuracy, Lowest Failure Rate, Competitive Running Time

Experiments

Known Model Fitting (Predefine the Model Type) Our DSP

Homography: EVD, Hpatch

Fundamental: T&T, CPC

Lowest Geometric Error & Competitive Running Time

Applications

• Multi-model fitting:

	Tlink	RCMSA	RPA	MCT	MLink	RFM-SCAN	Ours
ME_ave ME_med	27.65 27.88	10.05 6.087	5.28 4.35	11.36 1.21	6.04 4.22	$\frac{2.63}{1.20}$	1.64 0
RT(s)	1.95	2.16	10.84	6.44	9.72	0.01	0.18

Loop Closure Detection:

Thanks!

Presenter: Xingyu Jiang Email: jiangxy998@gmail.com

Project & Code & Demo

https://github.com/StaRainJ/DSP

