

On Evaluating Adversarial Robustness of Large Vision-Language Models

Yunqing Zhao^{*}, Tianyu Pang^{*†}, Chao Du[†], Xiao Yang, Chongxuan Li, Ngai-Man Cheung[†], Min Lin

Large vision-language models (Large VLMs)

Backgrounds: Emerging Large VLMs are powerful in response generation with visual input

ChatGPT 11. 2022	GPT4 03. 2023		BLIP-2 LLaVA Mini-GPT4 01. 2023 04. 2023 04. 2023					
[Closed	-Sourced]			[Open-Sourced]				
A Chatbot that provides a detailed response	A more advanced system that producing safer and more useful responses.		Conditional text generation given an image and an optional text prompt.	General-purpose visual and language understanding	General-purpose visual and language understanding			

Example: MiniGPT-4

Large vision-language models (Large VLMs)

Questions:

- When Large VLMs are deployed in practice:

Responsible answer generation in companies, Gov., or commercial usage

- Consequently, we ask:

What if the generated responses are wrong? It may raise serious concerns

We research the "worst case" of these large VLMs:

Can we let these VLMs generate "targeted response"?

METHOD

Matching image-text features (MF-it)

An intuitive method:

Matching the features via an image encoder and a text encoder

Matching image-image features (MF-ii)

Match target image features via an image encoder and a text-to-image model:

Matching text-text features (MF-tt)

Matching the features via a text encoder:

$$\underset{\|\boldsymbol{x}_{\text{cle}} - \boldsymbol{x}_{\text{adv}}\|_{p} \leq \epsilon}{\arg \max} \frac{g_{\psi}(p_{\theta}(\boldsymbol{x}_{\text{adv}}; \boldsymbol{c}_{\text{in}}))^{\top} g_{\psi}(\boldsymbol{c}_{\text{tar}})$$

 $g_{oldsymbol{\psi}}$: text encoder

Surrogate model

 $p_{ heta}$:image-2-text model

Target model

Matching text-text features (MF-tt)

Matching the features via a **text encoder (black-box setting)**:

$$\underset{\|\boldsymbol{x}_{\text{cle}} - \boldsymbol{x}_{\text{adv}}\|_{p} \leq \epsilon}{\arg \max} \frac{g_{\psi}(\boldsymbol{p}_{\theta}(\boldsymbol{x}_{\text{adv}}; \boldsymbol{c}_{\text{in}}))^{\top} g_{\psi}(\boldsymbol{c}_{\text{tar}})$$

Gradient estimation:

(Eq. (<mark>4</mark>))

$$egin{aligned} &
abla_{oldsymbol{x}_{ ext{adv}}} oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{p}_{ ext{dav}};oldsymbol{c}_{ ext{in}}))^{ op}oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & pprox rac{1}{N\sigma}\sum_{n=1}^{N} igg[oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{p}_{ ext{adv}}+\sigmaoldsymbol{\delta}_{n};oldsymbol{c}_{ ext{in}}))^{ op}oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & -oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{p}_{ ext{adv}};oldsymbol{c}_{ ext{in}}))^{ op}oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & -oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{p}_{ ext{adv}};oldsymbol{c}_{ ext{in}}))^{ op}oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & -oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{p}_{ ext{adv}};oldsymbol{c}_{ ext{in}}))^{ op}oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & oldsymbol{\delta}_{r} \ & oldsymbol{e}_{ ext{tar}}(oldsymbol{p}_{ ext{tar}}) \ & oldsymbol{g}_{oldsymbol{\psi}}(oldsymbol{c}_{ ext{tar}}) \ & oldsymbol{\delta}_{r} \ & oldsymbol{e}_{ ext{tar}}(oldsymbol{p}_{ ext{tar}}) \ & oldsymbol{e}_{r} \ & old$$

RGF-Estimator

MF-ii + MF-tt (Ours)

Experiments

Evading BLIP-2

Additional results

Li et al., Blip-2: Bootstrapping languageimage pre-training with frozen image encoders and large language models. arXiv 2023.

Evading UniDiffuser

Evading MiniGPT-4

Evading LLaVA

LLaVA: Visual Question-Answering

Quantitative evaluation (CLIP score between text and image features)

Performance: Matching image-text features (MF-it)

Model	$ $ Clear \boldsymbol{x}_{cle}	n image $h_{\xi}(oldsymbol{c}_{ ext{tar}})$	Adversa MF-ii	rial image MF-it	Time to obtain a single \boldsymbol{x}_{adv} MF-iiMF-ii		
CLIP (RN50) [62]	0.094	0.261	0.239	0.576	0.543	0.532	
CLIP (ViT-B/32) [62]	0.142	0.313	0.302	0.570	0.592	0.588	
BLIP (ViT) [39]	0.138	0.286	0.277	0.679	0.641	0.634	
BLIP-2 (ViT) [40]	0.037	0.302	0.294	0.502	0.855	0.852	
ALBEF (ViT) [38]	0.063	0.098	0.091	0.451	0.750	0.749	

White-box attacks against surrogate models

Good performance in white-box setting

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

VI M model	Attacking method		Text encoder (pretrained) for evaluation						nfo.
v Livi model	Attacking memod	RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res.
	Clean image	0.472	0.456	0.479	0.499	0.344	0.450		
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483	224M	384
DLIF [41]	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755		
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
	Clean image	0.417	0.415	0.429	0.446	0.305	0.402		
UniDiffuser [5]	MF-it	0.655	0.639	0.678	0.698	0.611	0.656	1 4 B	224
OlinDinuser [5]	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700	1.40	224
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
	Clean image	0.487	0.464	0.493	0.515	0.350	0.461		384
Img2Prompt [30]	MF-it	0.499	0.472	0.501	0.525	0.355	0.470	1.7B	
mg2F10mpt [50]	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476		504
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
	Clean image	0.473	0.454	0.483	0.503	0.349	0.452	3.7B	224
BI ID 2 [42]	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
BLII -2 [42]	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543		
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
	Clean image	0.383	0.436	0.402	0.437	0.281	0.388		
LL aVA [46]	MF-it	0.389	0.441	0.417	0.452	0.288	0.397	12 2D	224
LLavA [40]	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400	15.56	224
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
	Clean image	0.422	0.431	0.436	0.470	0.326	0.417	14.1B	224
MiniCPT 4 [100	MF-it	0.472	0.450	0.461	0.484	0.349	0.443		
MINGP1-4 [109]	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522		224
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		17

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

MF-ii is better, but the performance is limited by the targeted images;

VLM model	Attacking mathed		Text e	ncoder (pre	etrained) fo	r evaluatio	n	Other in	nfo.
	Attacking memou	RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res.
BLIP [41]	Clean image	0.472	0.456	0.479	0.499	0.344	0.450		
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483	22414	38/
	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755	224101	304
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
	Clean image	0.417	0.415	0.429	0.446	0.305	0.402	1.4B	
UniDiffusor [5]	MF-it	0.655	0.639	0.678	0.698	0.611	0.656		224
UniDiffuser [5]	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700		224
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
	Clean image	0.487	0.464	0.493	0.515	0.350	0.461	1.7B	384
I	MF-it	0.499	0.472	0.501	0.525	0.355	0.470		
ing2Prompt [50]	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476		
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
	Clean image	0.473	0.454	0.483	0.503	0.349	0.452	3.7B	224
BI ID 2 [42]	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
BLIF-2 [42]	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543		
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
	Clean image	0.383	0.436	0.402	0.437	0.281	0.388		
LL aVA [46]	MF-it	0.389	0.441	0.417	0.452	0.288	0.397	12.20	224
LLavA [40]	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400	15.56	224
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
	Clean image	0.422	0.431	0.436	0.470	0.326	0.417		224
MiniGPT 4 [100]	MF-it	0.472	0.450	0.461	0.484	0.349	0.443	14 10	
MiniGP1-4 [109]	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522	14.1B	224
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		18

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

MF-ii is better, but the performance is limited by the targeted images;

MF-ii + MF-tt achieves better performance

VLM model	Attacking mathed		Text e	ncoder (pro	etrained) fo	or evaluation	n	Other in	nfo.
	Attacking memou	RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res.
	Clean image	0.472	0.456	0.479	0.499	0.344	0.450		
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483	22414	201
BLIF [41]	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755	224111	304
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
	Clean image	0.417	0.415	0.429	0.446	0.305	0.402		
UniDiffusor [5]	MF-it	0.655	0.639	0.678	0.698	0.611	0.656	1 4 0	224
UIIDIIIuser [5]	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700	1.4D	224
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
	Clean image	0.487	0.464	0.493	0.515	0.350	0.461		
In a 2Drammet [20]	MF-it	0.499	0.472	0.501	0.525	0.355	0.470	1.7B	384
Img2Prompt [30]	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476		
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
	Clean image	0.473	0.454	0.483	0.503	0.349	0.452	2 7D	224
BI ID 2 [42]	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
BLIF-2 [42]	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543	5.7 D	
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
	Clean image	0.383	0.436	0.402	0.437	0.281	0.388		
LL aVA [46]	MF-it	0.389	0.441	0.417	0.452	0.288	0.397	12.20	224
LLavA [40]	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400	15.56	224
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
MiniGPT-4 [109]	Clean image	0.422	0.431	0.436	0.470	0.326	0.417		
	MF-it	0.472	0.450	0.461	0.484	0.349	0.443	14.10	224
	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522	14.18	224
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		19

Visual interpretation via GradCAM Analysis

- (a): Craft an adv image given a target string and a target image
- (b): GradCAM shows good correspondence to the query text over clean images, but not for adv images.
- (c): For adv image, we obtain similar GradCAM results as the target image.

Trade-off between image quality and perturbation budget

- LPIPS indicates perceptual similarity to the clean image.
- Lower means better quality

Sensitivity to common corruption

Increase the power of noise perturbation

Sensitivity of adversarial examples to Gaussian noises.

Learnt noise perturbation gradually becomes invalid.

Failure cases

Two failure cases, where the correct response is generated over adv images.

Thank you for watching