

CSOT:

Curriculum and Structure-Aware Optimal Transport for Learning with Noisy Labels

Wanxing Chang¹

Jingya Wang^{1, 2*}

¹ShanghaiTech University ²Engineering Research Center of Intelligent Vision and Imaging

> NeurIPS 2023 Nov 12, 2023

Project page: https://changwxx.github.io/CSOT-webpage/

Learning with Noisy Labels

上海科技大学 ShanghaiTech University

Learning with Noisy Labels (LNL) aims to train a classification network that is robust to corrupted labels and achieves high accuracy on a clean test set.

Denoising and Relabeling for Noisy Dataset

立志成才报图

A straight-forward strategy is to **identify clean labels** and **correct corrupted labels** in the noisy dataset, then **refurbish them to be clean**.

We need a robust pseudo-label allocator!

How to Construct Robust Pseudo-Labeling?

Existing Prediction-based PL

- × evaluate each sample independently
- × heavily rely on the unreliable model's prediction

Optimal Transport (OT) - based PL

- further consider the inter-distribution structure of the samples and categories distribution
- produce pseudo labels with global discriminability

OT-based PL is not good enough

上海科技大学 ShanghaiTech University

Existing Prediction-based PL

- × evaluate each sample independently
- × heavily on the unreliable model's prediction

Optimal Transport (OT) - based PL

- further consider the inter-distribution structure of the samples and categories distribution
- produce pseudo labels with global discriminability

Ours (CSOT-based PL)

- ✓ fully consider both inter- and intra-distribution structure of the samples
- ✓ produce robust pseudo labels with both global discriminability and local coherence
- incrementally assigns reliable labels to a fraction of the samples with the highest confidence

Curriculum and Structure-Aware OT

Structure-Aware OT

- ✓ inter-distribution
- ✓ intra-distribution
- ✓ global discriminability
- ✓ local coherence

Curriculum and Structure-Aware OT

¢و(•̀⊨•₀)

 prioritize samples with better global and local properties for robust label assignment!

- ✓ incremental assignment of reliable labels
- ✓ enable a curriculum pseudo-label allocator

$$CSOT$$

$$\min_{\mathbf{Q}\in\Pi^{c}(\alpha,\beta)} \langle \mathbf{C},\mathbf{Q}\rangle + \kappa \Omega(\mathbf{Q}) + \varepsilon \langle \mathbf{Q},\log \mathbf{Q}\rangle \quad , \text{ where } \mathbf{C} = -\log \mathbf{P}$$

Structure-Aware OT

- ✓ intra-distribution
- ✓ global discriminability
- ✓ local coherence

Structure-Aware OT $\min_{\mathbf{Q}\in\Pi(\alpha,\beta)} \langle \mathbf{C},\mathbf{Q} \rangle + \kappa \Omega(\mathbf{Q}) + \varepsilon \langle \mathbf{Q},\log \mathbf{Q} \rangle, \text{ where } \mathbf{C} = -\log \mathbf{P}$

Structure-Aware Regularization Terms $\Omega^{\mathbf{P}}(\mathbf{Q}) = -\sum_{i,j} \mathbf{S}_{ij} \sum_{k} \mathbf{P}_{ik} \mathbf{P}_{jk} \mathbf{Q}_{ik} \mathbf{Q}_{jk} = -\langle \mathbf{S}, (\mathbf{P} \odot \mathbf{Q}) (\mathbf{P} \odot \mathbf{Q})^{\mathrm{T}} \rangle$ $\Omega^{\mathbf{L}}(\mathbf{Q}) = -\sum_{i,j} \mathbf{S}_{ij} \sum_{k} \mathbf{L}_{ik} \mathbf{L}_{jk} \mathbf{Q}_{ik} \mathbf{Q}_{jk} = -\langle \mathbf{S}, (\mathbf{L} \odot \mathbf{Q}) (\mathbf{L} \odot \mathbf{Q})^{\mathrm{T}} \rangle$

*Notations

- $\mathbf{S} \in \mathbb{R}^{B \times B}$ is samples similarity matrix
- $\mathbf{P} \in \mathbb{R}^{B \times C}_+$ is softmax prediction matrix
- $\mathbf{L} \in \mathbb{R}^{B \times C}_+$ is one-hot label matrix

立志成才报目裕民

Curriculum OT

立志成才报問

A Lightspeed Solver for CSOT

上海科技大学 ShanghaiTech University

Algorithm 1 Efficient scaling iteration for entropic regularized Curriculum OT

1: Input: Cost matrix C, marginal constraints vectors α and β , entropic regularization weight ε

2: Initialize:
$$\mathbf{K} \leftarrow e^{-\mathbf{C}/\varepsilon}, \mathbf{v}^{(0)} \leftarrow \mathbb{1}_{|\boldsymbol{\beta}|}$$

3: Compute:
$$\mathbf{K}_{\boldsymbol{\alpha}} \leftarrow \frac{\mathbf{K}}{\operatorname{diag}(\boldsymbol{\alpha})\mathbb{1}_{|\boldsymbol{\alpha}| \times |\boldsymbol{\beta}|}}, \mathbf{K}_{\boldsymbol{\beta}}^{\top} \leftarrow \frac{\mathbf{K}^{\top}}{\operatorname{diag}(\boldsymbol{\beta})\mathbb{1}_{|\boldsymbol{\beta}| \times |\boldsymbol{\alpha}|}} // \text{ Saving computation}$$

4: for $n = 1, 2, 3, \ldots$ do
5: $\boldsymbol{u}^{(n)} \leftarrow \min\left(\frac{\mathbb{1}_{|\boldsymbol{\alpha}|}}{2}, \mathbb{1}_{|\boldsymbol{\alpha}|}\right)$

5:
$$\boldsymbol{u}^{(n)} \leftarrow \min\left(\frac{\mathbb{1}|\boldsymbol{\alpha}|}{\mathbf{K}_{\boldsymbol{\alpha}}\boldsymbol{v}^{(n-1)}}, \mathbb{1}_{|\boldsymbol{\alpha}|}\right)$$

6: $\boldsymbol{v}^{(n)} \leftarrow \frac{\mathbb{1}_{|\boldsymbol{\beta}|}}{\mathbf{K}^{\top}\boldsymbol{\omega}^{(n)}}$

7: end for
8: Return: diag
$$(\boldsymbol{u}^{(n)})$$
Kdiag $(\boldsymbol{v}^{(n)})$

Algorithm 2 Generalized conditional gradient algorithm for entropic regularized CSOT

- 1: Input: Cost matrix **C**, marginal constraints vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, entropic regularization weight ε , local coherent regularization weight κ , local coherent regularization function $\Omega : \mathbb{R}^{|\boldsymbol{\alpha}| \times |\boldsymbol{\beta}|} \to \mathbb{R}$, and its gradient function $\nabla \Omega : \mathbb{R}^{|\boldsymbol{\alpha}| \times |\boldsymbol{\beta}|} \to \mathbb{R}^{|\boldsymbol{\alpha}| \times |\boldsymbol{\beta}|}$
- 2: Initialize: $\mathbf{Q}^{(0)} \leftarrow \boldsymbol{\alpha} \boldsymbol{\beta}^T$
- 3: for $i = 1, 2, 3, \dots$ do
- 4: $\mathbf{G}^{(i)} \leftarrow \mathbf{Q}^{(i)} + \kappa \nabla \Omega(\mathbf{Q}^{(i)})$ // Gradient computation
- 5: $\widetilde{\mathbf{Q}}^{(i)} \leftarrow \operatorname{argmin}_{\mathbf{Q}\in\mathbf{\Pi}^{c}(\boldsymbol{\alpha},\boldsymbol{\beta})} \langle \mathbf{Q}, \mathbf{G}^{(i)} \rangle + \varepsilon \langle \mathbf{Q}, \log \mathbf{Q} \rangle$ // Linearization, solved efficiently by Algorithm **O**
- 6: Choose $\eta^{(i)} \in [0,1]$ so that it satisfies the Armijo rule // Backtracking line-search
- 7: $\mathbf{Q}^{(i+1)} \leftarrow \left(1 \eta^{(i)}\right) \mathbf{Q}^{(i)} + \eta^{(i)} \widetilde{\mathbf{Q}}^{(i)}$ // Update
- 8: **end for**

9: Return:
$$\mathbf{Q}^{(i)}$$

Table 3: **Time cost (s) for solving CSOT optimization problem of different input sizes.** VDA indicates vanilla Dykstras algorithmbased CSOT solver, while ESI indicates the efficient scaling iteration-based solver.

(oldsymbollpha , oldsymboleta)	VDA-based	ESI-based (Ours)
(1024,10)	0.83	0.82 🦊
(1024,50)	1.00	0.80 🗸
(1024,100)	0.87	0.80 🗸
(50,50)	0.82	0.79 🗸
(100, 100)	0.88	0.80 🗸
(500,500)	0.88	0.87 🗸
(1000, 1000)	0.94	0.81 🗸
(2000, 2000)	2.11	0.98
(3000,3000)	3.74	0.99

+9%!

立志成才花

Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and CIFAR-100. The results are mainly copied from [45, 48]. We present the performance of our CSOT method using the "mean \pm variance" format, which is obtained from 3 trials with different seeds.

Dataset	CIFAR-10				CIFAR-100				
Noise type	Symmetric			Assymetric	Symmetric				
Method/Noise ratio	0.2	0.5	0.8	0.9	0.4	0.2	0.5	0.8	0.9
Cross-Entropy	86.8	79.4	62.9	42.7	85.0	62.0	46.7	19.9	10.1
F-correction [55]	86.8	79.8	63.3	42.9	87.2	61.5	46.6	19.9	10.2
Co-teaching+ [耳]	89.5	85.7	67.4	47.9	_	65.6	51.8	27.9	13.7
PENCIL [75]	92.4	89.1	77.5	58.9	88.5	69.4	57.5	31.1	15.3
DivideMix [45]	96.1	94.6	93.2	76.0	93.4	77.3	74.6	60.2	31.5
ELR [50]	95.8	94.8	93.3	78.7	93.0	77.6	73.6	60.8	33.4
NGC [72]	95.9	94.5	91.6	80.5	90.6	79.3	75.9	62.7	29.8
RRL [43]	96.4	95.3	93.3	77.4	92.6	80.3	76.0	61.1	33.1
MOIT [53]	93.1	90.0	79.0	69.6	92.0	73.0	64.6	46.5	36.0
UniCon [4]	96.0	95.6	93.9	90.8	94.1	78.9	77.6	63.9	44.8
NCE [45]	96.2	95.3	93.9	88.4	94.5	81.4	76.3	64.7	41.1
OT Cleaner [73]	91.4	85.4	56.9	_	-	67.4	58.9	31.2	-
OT-Filter [😫]	96.0	95.3	94.0	90.5	95.1	76.7	73.8	61.8	42.8
CSOT (Best)	96.6±0.10	96.2±0.11	94.4±0.16	90.7±0.33	95.5±0.06	80.5±0.28	77.9±0.18	67.8±0.23	50.5±0.46
CSOT (Last)	96.4±0.18	96.0±0.11	94.3±0.20	90.5±0.36	95.2±0.12	80.2±0.31	77.7±0.14	67.6±0.36	50.3±0.33

Comparison with state-of-the-arts

Table 2: Comparison with state-of-the-art methods in top-1 / 5 test accuracy (%) on the Webvision and ImageNet ILSVRC12 validation sets. The models are trained on the training set of the Webvision dataset.

	Webv	vision	ILSVRC12		
Method	top-1	top-5	top-1	top-5	
F-correction [46]	61.12	82.68	57.36	82.36	
Decoupling [42]	62.54	84.74	58.26	82.26	
MentorNet [31]	63.00	81.40	57.80	79.92	
Co-teaching [24]	63.58	85.20	61.48	84.70	
DivideMix [37]	77.32	91.64	75.20	90.84	
ELR [40]	76.26	91.26	68.71	87.84	
ELR+ [<mark>40]</mark>	77.78	91.68	70.29	89.76	
NGC [<mark>60]</mark>	79.20	91.80	74.40	91.00	
RRL [38]	77.80	91.30	74.40	90.90	
MOIT [45]	77.90	91.90	73.80	91.70	
NCE [<mark>36</mark>]	79.50	93.80	76.30	94.10	
CSOT	79.67	91.95	76.64	91.67	

Comparison with state-of-the-arts

Figure 2: Performance comparison for clean label identification and corrupted label correction.

Ablation study

Table 3: Ablation studies under multiple label noise ratios on CIFAR-10 and CIFAR-100. "repl." is an abbreviation for "replaced", and *L*^{ce} represents a cross-entropy loss. GMM refers to the selection of clean labels based on small-loss criterion [37]. CT (conf dence thresholding [52]) is a relabeling scheme where we set the CT value to 0.95.

	Dataset		CIFAR-10			CIFAR-100			
	Noisetype		Sym.		Asym.		Sym.		Avg
	Method/Noise ratio	0.5	0.8	0.9	0.4	0.5	0.8	0.9	_
Denoise Relabeling Technique	(a) Classical OT	95.45	91.95	82.35	95.04	75.96	62.46	43.28	78.07
	(b) Structure-aware OT	95.86	91.87	83.29	95.06	76.20	63.73	44.57	78.65
	(c) CSOT w/o Ω^{P} and Ω^{L}	95.53	93.84	89.50	95.14	75.96	66.50	47.55	80.57
	(d) CSOT w/o Ω ^P	95.77	94.08	89.97	95.35	76.09	66.79	48.13	80.88
	(e) CSOT w/o Ω ^L	95.55	93.97	90.41	95.15	76.17	67.28	48.01	80.93
Learning Technique	(f) GMM + <i>L</i> ^{sup}	92.48	80.37	31.76	90.80	69.52	48.49	20.86	62.04
	(g) CSOT repl. <i>L</i> ^{sup} with <i>L</i> ^{ce}	93.47	81.93	53.45	91.43	72.66	50.62	21.77	66.48
	(h) CSOT w/o L ^{sem i}	95.34	93.04	88.9	94.11	75.16	61.13	36.94	77.80
	(i) CSOT repl. correction with CT (0.95)	95.46	90.73	89.09	95.21	75.85	64.28	48.76	79.91
	(j) CSOT w/oL ^{simsiam}	95.92	94.17	89.31	95.16	76.38	66.17	45.56	80.38
	CSOT	96.20	94.39	90.65	95.50	77.94	67.78	50.50	81.85

Structure-Aware OT

- ✓ inter-distribution
- ✓ intra-distribution
- ✓ global discriminability
- ✓ local coherence

Curriculum and Structure-Aware OT

 prioritize samples with better global and local properties for robust label assignment!

Curriculum OT

- ✓ incremental assignment of reliable labels
- ✓ enable a curriculum pseudo-label allocator

scan QR code for more details (code, poster, slides...)

