Private Everlasting Prediction Moni Naor¹, Kobbi Nissim², Uri Stemmer³, Chao Yan²

- 1. Weizmann Institute of Science
- 2. Georgetown University
- 3. Tel Aviv University

How many examples do we need?

PAC learning [Valiant 84] : $\Theta(VC(C))$

Private PAC learning [KLNRS 08]

- Learner PAC learns the model
- Learner L is differentially private
- Theorem: n examples suffice,
 - $n = O(\log|C|)$ [KLNRS 08]
 - $n = O((LDim|C|)^6)$ [BLM20, GGKM20]

$(D) \Rightarrow C \Rightarrow C \Rightarrow M'$ ΙνΙ

Price of private learning

- PAC learning: $n = \Theta(VC(C))$
- Private learning: $n = O(\min(\log|C|, LDim^6(C)))$

• $VC(C) \leq \min(\log C , LDim(C))$		
Learning threshold f		
PAC learning	Pure DP	
	learning	
n = O(1)	$n = \Theta(\log X)$	
	[FX 15]	

$(\mathbf{D} \rightarrow \mathbf{S} \rightarrow \mathbf{I} \rightarrow \mathbf{M} \rightarrow$

n grows functions with X Approximate **DP** learning $n = \Theta(\log^*|X|)$
[BNS 13, BNSV 15, CLNSS 23,...]

Rethinking private learning

Rethinking private learning

Blackbox prediction [Dwork Feldman 18]

- Labeled dataset $S = ((x_1, y_1), ..., (x_n, y_n))$
- A single differentially private prediction: on query χ , output the label γ
- $n = \Theta(VC(C))$
- Answer *t* prediction queries by increasing *n* to $O\left(\sqrt{t}VC(C)\right)$ (using advanced composition)

n grows with t

Main Result: private everlasting prediction **Predict an unlimited number of queries**

- Given labeled dataset S = $((x_1, y_1), \dots, (x_n y_n))$, we can privately predict an unlimited number of queries, where $n = O(VC^2(C))$.
- Utility Guarantee: with probability $1-\beta$, every query is answered with α -accurate hypothesis
- Privacy guarantee: differentially private both for S and queries. An adaptive version of JDP [Kearns et al. 2015]

Observation: black box prediction cannot only depend on S

Image: Set in the set in th

One black box private prediction implies private learning

A generic construction

• $|S_i| \approx VC^2(C)$ • $m \approx VC^2(C)$

Prediction queries

Privacy of labeled set S

$y = noisy maj(f_1(x), ..., f_T(x))$

Generating labeled samples for the next round

 S_{i+1}

Round i

LabelBoost[BNS14]: Uses exponential mechanism to select a hypothesis, then uses this hypothesis to give labels

Update S_i

LabelBoost[BNS14]: Use exponential mechanism select a hypothesis, then use this hypothesis give labels

 S_{i+1}

Summary

- Everlasting prediction alternative to private learning
 - Predict any concept class with finite VC (e.g. thresholds over the reals)
 - It is efficient on some hard tasks for private learning (e.g. EncThresh [BZ15])

- Open questions
 - Could |S| be reduced to linear in VC?
 - It's VC^2 in our construction
 - Could this construction be made polynomial time?
 - We use exponential mechanism to generate new dataset.

	Private learning	Our wor
Thresholds over reals	impossible	n = O(1)
EncThresh	Time inefficient	Time effic

Thank

GOUL

