

Generalized Information-theoretic Multi-view Clustering

Weitian Huang, Sirui Yang, Hongmin Cai*

School of Computer Science and Engineering South China University of Technology Guangzhou, 510006, China

Background

Ę

Multi-view Clustering:

Exploring low-dimensional embeddings for describing flexible multi-view data and revealing the hidden patterns.

- Minimal: eliminate superfluous information from each view.
- Sufficient: contain task-related information at different levels of data.

Variants of Information Bottleneck

• Information Bottleneck:

Ē

$$\mathcal{L}_{IB} = \max_{\mathbf{Z}} \frac{I(\mathbf{Z}; \mathbf{Y})}{Sufficient} - \frac{\beta I(\mathbf{Z}; \mathbf{X})}{Minimal}$$

• Unsupervised Information Bottleneck:

$$\mathcal{L}_{UIB} = \max_{\mathbf{z}} I(\mathbf{Z}; \mathbf{X}) - \beta I(\mathbf{Z}; i)$$

$$\stackrel{(a)}{\geq} \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{p(\mathbf{z}|\mathbf{x})} \left[\log q(\mathbf{x}|\mathbf{z}) \right] - \beta D_{KL}(p(\mathbf{z}|\mathbf{x})||q(\mathbf{z})) \right]$$

Reconstruction

- Connection to β VAE

Regularization

• Deep clustering:

$$\mathcal{L}_{IBC} = \max_{\mathbf{Z}} I(\mathbf{Z}; \mathbf{X}) - \beta I(\mathbf{Z}; i)$$

$$\geq \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{p(\mathbf{z}|\mathbf{x})} \left[\log q(\mathbf{x}|\mathbf{z}) \right] - \beta D_{KL}(p(\mathbf{z}|\mathbf{x})) ||q(\mathbf{z})) - \gamma \mathbb{E}_{p(\mathbf{z}|\mathbf{x})} \left[\underline{D}_{KL}(p(\mathbf{c}|\mathbf{x})) ||q(\mathbf{c}|\mathbf{z})) \right] \right]$$

Cluster structure preserving

 \longrightarrow Connection to *DEC* ($\beta = 0$ and $\gamma = 1$); *VaDE* ($\beta = 1$ and $\gamma = 1$)

Motivation

(a) Special case

Which information is relevant?

View	Shared	Not Shared
\mathbf{v}_1	0	
v ₂	9	ب

Related works:

[1] MIB (ICLR 2021)

Marco Federici, et al. "Learning robust representations via multi-view information bottleneck." *In ICLR, 2021*.

[2] DCP (TPAMI 2022)

Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. "Dual contrastive prediction for incomplete multi-view representation learning." *IEEE Trans. Pattern Anal. Mach. Intell.*, 2022.

 v_1

Generalized Information-theoretic Multi-view Clustering

(b) General case

IMC: Information-based Multi-view Clustering

Comprehensiveness:
$$\mathbf{Z}^* = \arg \max_{\mathbf{Z}} I(\mathbf{Z}; \mathcal{X})$$

Concentration: $\mathbf{Z}^{(v)*} = \arg \min_{\mathbf{Z}^{(v)}} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)})$
Cross-diversity: $\mathcal{Z}^* = \arg \max_{\mathcal{Z}} I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{Z}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{Z}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{Z}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{Z}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{Z}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{Z}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 $\mathcal{L}_{IMC} = \max_{\mathbf{Z}, \mathcal{Z}} I(\mathbf{Z}; \mathcal{Z}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{Z}^{(v)}) + \beta I(\mathbf{Z}^{(v)}; \mathbf{Z}^{(v)}) + \beta I(\mathbf{Z}; \mathcal{Z})$
 \mathcal{L}_{IMC}

X⁽²⁾

Multi-VAE scheme to solve IMC

Encoders

 $p(\mathbf{z}|\boldsymbol{\mathcal{X}}) =$

 $q(\boldsymbol{\mathcal{X}}|\mathbf{z}) = \mathbf{I}$

v=1

Following VAE, we instantiate the IMC using deep neural networks and optimize it by leveraging SGVB and Monte Carlo sampling.

$$\mathcal{L}_{IMC} = \max_{\mathbf{Z},\mathbf{Z}} I(\mathbf{Z}; \mathbf{X}) - \sum_{v}^{m} I(\mathbf{Z}^{(v)}; \mathbf{X}^{(v)}) + \beta I(\mathbf{Z}; \mathbf{Z})$$

$$\stackrel{(d)}{\geq} \mathbb{E}_{p(\mathbf{X})} \left[\underbrace{\mathbb{E}_{p(\mathbf{z}|\mathbf{X})} \left[\log q(\mathbf{X}|\mathbf{z}) \right]}_{\text{data reconstruction}} - \underbrace{\sum_{v}^{m} D_{KL}(p(\mathbf{z}^{(v)}|\mathbf{x}^{(v)})) \right]}_{\text{multi-regularization}} - \gamma \underbrace{\mathbb{E}_{p(\mathbf{z}|\mathbf{X})} \left[D_{KL}(p(\mathbf{c}|\mathbf{X})||q(\mathbf{c}|\mathbf{z})) \right]}_{\text{clustering}} \right] + \beta \underbrace{I(\mathbf{Z}; \mathbf{Z})}_{\text{information shift}} .$$
Hers and Decoders:
$$= \int \int \dots \int p_{\psi}(\mathbf{z}|\{\mathbf{z}^{(v)}\}_{v=1}^{m}) \prod_{v=1}^{m} p_{\theta^{(v)}}(\mathbf{z}^{(v)}|\mathbf{x}^{(v)}) d_{\mathbf{z}^{(1)}} d_{\mathbf{z}^{2}} \dots d_{\mathbf{z}^{m}},$$

$$= \mathbb{E}_{p_{\theta^{(1)}}(\mathbf{z}^{(1)}|\mathbf{x}^{(1)})} \mathbb{E}_{p_{\theta^{(2)}}(\mathbf{z}^{(2)}|\mathbf{x}^{(2)})} \dots \mathbb{E}_{p_{\theta^{(m)}}(\mathbf{z}^{(m)}|\mathbf{x}^{(m)})} \left[p_{\psi}(\mathbf{z}|\{\mathbf{z}^{(v)}\}_{v=1}^{m}) \right], \quad \text{illustration}$$

С

X⁽²⁾

Z⁽²⁾

~ $\mathcal{N}(\mathbf{0},\mathbf{I})$

X⁽²⁾

Ablation models:

(1) **IMC-v1** reduces the item of information shift, i.e., $\beta = 0$.

(2) **IMC-v2** sets $\gamma = 0$ to discard the KL divergence of the clustering item and uses k-means to perform clustering.

Datasets	Metrics	DMVAE	MIB	CMIB-Nets	Completer	IMC-v1	IMC-v2	IMC
UCI-digits	ACC NMI ARI	$\begin{array}{c} 90.95{\pm}0.62\\ 85.54{\pm}1.06\\ 85.40{\pm}1.54\end{array}$	$\begin{array}{c} 83.30{\pm}1.27\\ 75.43{\pm}1.04\\ 76.16{\pm}1.55\end{array}$	$\begin{array}{c} 85.70{\pm}1.15\\ 78.31{\pm}1.41\\ 76.97{\pm}1.64\end{array}$	$\frac{\frac{91.28 \pm 1.41}{86.34 \pm 0.60}}{\frac{86.67 \pm 0.86}{20.86}}$	$\begin{array}{c} 90.01{\pm}0.60\\ 84.79{\pm}0.32\\ 84.78{\pm}0.43\end{array}$	$\begin{array}{c} 84.01{\pm}1.15\\ 79.01{\pm}1.54\\ 78.18{\pm}0.88\end{array}$	$\begin{array}{c}92.13{\pm}0.55\\88.01{\pm}0.73\\87.83{\pm}0.25\end{array}$
Notting-Hill	ACC NMI ARI	$\begin{array}{c} 76.22{\pm}1.21\\ 72.97{\pm}0.96\\ 69.50{\pm}0.77 \end{array}$	81.65 ± 1.37 75.95 ± 2.52 71.91 ± 1.61	$\frac{85.40{\pm}2.36}{78.65{\pm}2.57}$ 80.46 ${\pm}1.92$	80.17±2.79 76.11±2.27 71.48±3.29	77.79 ± 2.00 74.93 ± 1.94 70.30 ± 2.15	$\begin{array}{c} 84.83{\pm}1.90\\ \underline{78.79{\pm}1.08}\\ \overline{79.10{\pm}2.32}\end{array}$	87.10±1.35 80.67±1.42 <u>80.19±1.74</u>
BDGP	ACC NMI ARI	$\frac{90.59{\pm}1.45}{\textbf{85.32}{\pm}\textbf{0.53}}\\ \underline{78.58}{\pm}2.54$	$\begin{array}{c} 86.82{\pm}0.65\\ 80.82{\pm}0.86\\ 73.90{\pm}1.65\end{array}$	$\begin{array}{c} 85.82{\pm}0.58\\ 81.60{\pm}0.66\\ 74.25{\pm}2.19\end{array}$	$79.31{\pm}1.55 \\ 74.25{\pm}0.69 \\ 71.44{\pm}1.45$	$\begin{array}{c} 88.70{\pm}1.42\\ 81.47{\pm}1.12\\ 77.65{\pm}2.15\end{array}$	$\begin{array}{c} 80.46 {\pm} 1.85 \\ 73.31 {\pm} 2.45 \\ 69.31 {\pm} 2.80 \end{array}$	$\begin{array}{c} \textbf{91.46}{\pm}\textbf{0.82} \\ \underline{84.40}{\pm}1.20 \\ \textbf{80.25}{\pm}\textbf{1.62} \end{array}$
Caltech20	ACC NMI ARI	$\frac{61.50 \pm 0.54}{68.32 \pm 1.23}$ 59.86 \pm 1.46	56.12 ± 2.54 63.28 ± 2.66 58.10 ± 2.90	$\begin{array}{c} 55.26{\pm}3.18\\ 62.44{\pm}2.56\\ 56.45{\pm}2.74\end{array}$	$\begin{array}{c} \textbf{62.31}{\pm}\textbf{2.65} \\ \textbf{70.25}{\pm}\textbf{2.20} \\ \underline{\textbf{61.14}{\pm}\textbf{2.55}} \end{array}$	$\begin{array}{c} 58.05{\pm}1.28\\ 65.75{\pm}2.20\\ 57.52{\pm}2.56\end{array}$	$52.42 \pm 3.15 \\ 61.76 \pm 3.40 \\ 53.30 \pm 2.82$	$\begin{array}{c} 60.82{\pm}1.66\\ \underline{69.20{\pm}1.48}\\ \mathbf{61.42{\pm}2.12}\end{array}$

Table 1: Clustering performance comparison on four datasets (mean±standard deviation). The optimal and suboptimal results are in bold and underlined, respectively.

Limitations: The mathematical strategy for selecting the optimal trade-off parameters is a direction that can be studied in the future.

Thanks for your attention

Welcome to our poster session!

