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Introduction: Federated Learning

Federated learning (FL) is a distributed paradigm which coordinates massive local
clients to collaboratively train global model via stage-wise local training processes
on the heterogeneous dataset by a global central server.
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Main Challenges in Federated Learning

– Low Computing Power on Edge-devices [Low power devices]

– Dataset Privacy [No direct accesses across devices]

– Client Drifts [Heterogeneous local optimal]

– Communication Bottleneck [Limited Network Bandwidth]
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Our Contributions:

➢ To alleviate the client drifts, we propose the FedInit method to improve the local
consistency, which employs personalized relaxed initialization (RI) on selected
local clients at each communication round.

➢ To understand its benefits, we study the Excess Risk to jointly analyze the error
of optimization and generalization. Different from the previous work,

(1) Excess risk could be considered as the test error performance. Our analysis
directly reflects why RI works in the FL paradigm.

(2) We expand the analysis of the stability in FL.

(3) We study the impacts of the inconsistency to FL.

➢ We conduct extensive experiments on several general model backbones and the
different FL setups to validate the efficiency of RI.
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FedInit Methodology

FedInit begins the local training from a new personalized state, which moves away
from the last global model towards the reverse direction from the latest local state:

𝑤𝑖,0
𝑡 = 𝑤𝑡 + 𝛽(𝑤𝑡 − 𝑤𝑖,𝐾

𝑡−1). 

Though it changes the consistency around selected clients, 

(1) Its global expectation is still unbiased, which is 
1

𝑁
σ𝑖∈[𝑁]𝑤𝑖,0

𝑡 = 𝑤𝑡.

(2) It enlarge the distance to achieve local optimal. 



The University of Sydney Page 6

Benefits from the Relaxed Initialization 

– Relaxed initialization helps to avoid the local overfitting

– Relaxed initialization helps to enhance the local consistency

– Relaxed initialization could work as a plug-in to several advanced 

methods to further improve their efficiency without conflicts

– Relaxed initialization does not require additional costs of storage 

and communication across local clients
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Different from “Lookahead”

The personalized relaxed initialization (RI) is partially motivated by the “lookahead”
optimization which has shown significant improvements in the stochastic case, i.e.,
for one client,

However, RI performs as 𝑤𝑖,0
𝑡 = 𝑤𝑡 + 𝛽 𝑤𝑡 −𝑤𝑖,𝐾

𝑡−1 = 1 + 𝛽 𝑤𝑡 − 𝛽𝑤𝑖,𝐾
𝑡 , which is

the extrapolation of the global and local states.

Furthermore, “Lookahead” acts on the end of each training stage, while RI acts on
the beginning of each training stage.

(1) k-step updates and 1-step lookahead
(2) interpolation of current and previous

states
𝑤𝑡 = 𝑤𝑡−1 + 𝛼 𝜃𝑡 − 𝑤𝑡−1

= 𝛼𝜃𝑡 + 1 − 𝛼 𝑤𝑡−1
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Theoretical Analysis: Assumptions

Assumption 1. (for opt) 𝑓𝑖(𝑤) is 𝐿-smooth, ∇𝑓𝑖 𝑤1 − ∇𝑓𝑖 𝑤2 ≤ 𝐿‖𝑤1 − 𝑤2‖.

Assumption 2. (for opt) bounded gradients, 𝐸 𝑔𝑖 = ∇𝑓𝑖 𝑤 , 𝐸 𝑔𝑖 − ∇𝑓𝑖 𝑤
2 ≤ 𝜎𝑙

2.

Assumption 3. (for opt) bounded heterogeneity, 𝐸 ∇𝑓𝑖 𝑤
2 ≤ 𝐺2 + 𝐵2𝐸 ∇𝑓 𝑤 2.

Assumption 4. (for gen) 𝑓(𝑤) is 𝐿𝐺-Lipschitz, 𝑓 𝑤1 − 𝑓 𝑤2 ≤ 𝐿𝐺‖𝑤1 − 𝑤2‖.

Assumption 5. (for gen) 𝑃𝐿-condition, 2𝜇 𝑓 𝑤 − 𝑓 𝑤⋆ ≤ ∇𝑓 𝑤 2.

Our work focuses on understanding how the generalization performance changes
in the training process. We consider the entire training process and adopt uniform
stability to measure the global generality in FL. Assumption 1-3 are the general
assumptions in convergence analysis. Assumption 4-5 are adopted to analyze the
uniform stability and generalization.
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Theoretical Analysis: Excess Risk and Test Error

Opt. Term Convergence Bound Rate
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Consistency Upper Bound Rate
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Gen. Term Stability Bound Rate
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Experiments
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Experiments
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