Thin and deep Gaussian processes

Daniel Augusto de Souza¹, Alexander Nikitin², S. T. John², Magnus Ross³, Mauricio A Álvarez³, Marc Peter Deisenroth¹, João P. P. Gomes⁴, Diego Mesquita⁵, César L. C. Mattos⁴

¹University College London ²Aalto University ³University of Manchester ⁴Universidade Federal do Ceará ⁵Fundação Getulio Vargas

TL;DW

- Current hierarchical Gaussian process models learn one of the following:
 - Latent mappings reduce dimensionality (DKL/CDGP);
 - Lengthscale fields easier to interpret (DNSGP);
- We...
 - Propose the thin and deep Gaussian process (TDGP), a new deep GP method that learns both, increasing its interpretability over previous proposals!
 - Show that it has a close relation to the more standard DGP but enables the learning of lengthscales.
 - Demonstrate its performance in synthetic, generic and geospatial datasets.

• For a kernel k, a Gaussian process $f(\cdot) \sim \mathcal{GP}(0, k)$ is a distribution over functions.

- For a kernel k, a Gaussian process
 f(·) ~ GP(0, k) is a distribution over functions.
- Such that cov[f(a), f(b)] = k(a, b).

- For a kernel k, a Gaussian process $f(\cdot) \sim \mathcal{GP}(0, k)$ is a distribution over functions.
- Such that cov[f(a), f(b)] = k(a, b).
- Moreover, for training data (X, y), the posterior distribution is also a GP: $f(\cdot) \mid \mathcal{D} \sim \mathcal{GP} \begin{pmatrix} k(\cdot, \mathbf{X}) k(\mathbf{X})^{-1} \mathbf{y}, \\ k - k(\cdot, \mathbf{X}) k(\mathbf{X})^{-1} k(\mathbf{X}, \cdot) \end{pmatrix}$

- For a kernel k, a Gaussian process $f(\cdot) \sim \mathcal{GP}(0, k)$ is a distribution over functions.
- Such that cov[f(a), f(b)] = k(a, b).
- Moreover, for training data (X, y), the posterior distribution is also a GP: $k(\cdot \mathbf{X})k(\mathbf{X})^{-1}\mathbf{v}$ 1 f(

$$\mathcal{D} \sim \mathcal{GP}\left(k - k(\cdot_1, \mathbf{X})k(\mathbf{X})^{-1}k(\mathbf{X}, \cdot_2) \right)$$

Stationary kernel

k(a,b) = k(0,b-a)

• A kernel is isotropic stationary with lengthscale Δ if:

• A kernel is isotropic stationary with lengthscale Δ if: k(a,b) = k(a-b,0) [Stationarity]

• A kernel is isotropic stationary with lengthscale Δ if:

$$k(a,b) = k(a - b, 0)$$
[Stationarity]
= $\pi_k ((a - b)^T \Delta^{-1} (a - b))$ [Isotropic]

• A kernel is isotropic stationary with lengthscale Δ if:

$$k(a,b) = k(a - b, 0)$$
[Stationarity]
= $\pi_k ((a - b)^T \Delta^{-1}(a - b))$ [Isotropic]
= $\pi_k ((Wa - Wb)(Wa - Wb)^T)$

• A kernel is isotropic stationary with lengthscale Δ if:

$$k(a,b) = k(a - b, 0)$$
[Stationarity]
= $\pi_k ((a - b)^T \Delta^{-1}(a - b))$ [Isotropic]
= $\pi_k ((Wa - Wb)(Wa - Wb)^T)$

• For example, $k(a, b) = \sigma_f^2 \exp\left[-\frac{1}{2}\sum_i \frac{(a_i - b_i)^2}{\ell_i^2}\right]$, then we have $\pi_k(d^2) = \sigma_f^2 \exp\left[-\frac{1}{2}d^2\right]$ with diagonal $\Delta_{ii} = \ell_i$.

Understanding lengthscales

- Lengthscales control the spatial variance of a Gaussian process;
- For example, with the squared exponential kernel: $k_{SE}(a,b) = \exp\left[-\frac{1}{2}\frac{(a-b)^2}{\ell^2}\right],$

then,

$$\frac{\mathrm{d} \mathrm{f}}{\mathrm{d} x} \sim \mathcal{GP}\left(0, \frac{1}{\ell^2}\right).$$

Non-stationary kernel

$k(a,b) \neq k(0,b-a)$

Compositional kernels

• Let $\tau(\cdot)$ be an arbitrary warping function: $k_{\tau}(a,b) = k(\tau(a),\tau(b))$

Compositional kernels

- Let $\tau(\cdot)$ be an arbitrary warping function: $k_{\tau}(a,b) = k(\tau(a),\tau(b))$
- If $\tau(x) = \ell^{-1} \cdot x$ is a linear function, then k_{τ} is stationary with lengthscale ℓ .

Compositional kernels

- Let $\tau(\cdot)$ be an arbitrary warping function: $k_{\tau}(a,b) = k(\tau(a),\tau(b))$
- If $\tau(x) = \ell^{-1} \cdot x$ is a linear function, then k_{τ} is stationary with lengthscale ℓ .
- If $\tau(x)$ is a parametric non-linear function, this corresponds to the deep kernel learning model. [Wilson et al., 2016]

Compositional kernels

- Let $\tau(\cdot)$ be an arbitrary warping function: $k_{\tau}(a,b) = k(\tau(a),\tau(b))$
- If $\tau(x) = \ell^{-1} \cdot x$ is a linear function, then k_{τ} is stationary with lengthscale ℓ .
- If $\tau(x)$ is a parametric non-linear function, this corresponds to the deep kernel learning model. [Wilson et al., 2016]
- If τ(x) ~ GP(m, k'), this corresponds to the traditional compositional deep Gaussian process.
 [Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017a]

Lengthscale mixture kernels

• Let $\Delta(\cdot)$ be a lengthscale field:

$$\sqrt{\frac{\sqrt{|\boldsymbol{\Delta}(a)|}\sqrt{|\boldsymbol{\Delta}(b)|}}{|\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)|}}\pi_{k}\left((a-b)^{\mathrm{T}}\left[\frac{\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)}{2}\right]^{-1}(a-b)\right)$$

Lengthscale mixture kernels

• Let $\Delta(\cdot)$ be a lengthscale field:

$$\sqrt{\frac{\sqrt{|\boldsymbol{\Delta}(a)|}\sqrt{|\boldsymbol{\Delta}(b)|}}{|\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)|}}\pi_{k}\left((a-b)^{\mathrm{T}}\left[\frac{\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)}{2}\right]^{-1}(a-b)\right)$$

• If k is squared exponential, this is the Gibbs' kernel. [Gibbs, 1997]

Lengthscale mixture kernels

• Let $\Delta(\cdot)$ be a lengthscale field:

$$\sqrt{\frac{\sqrt{|\boldsymbol{\Delta}(a)|}\sqrt{|\boldsymbol{\Delta}(b)|}}{|\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)|}}\pi_{k}\left((a-b)^{\mathrm{T}}\left[\frac{\boldsymbol{\Delta}(a)+\boldsymbol{\Delta}(b)}{2}\right]^{-1}(a-b)\right)$$

- If k is squared exponential, this is the Gibbs' kernel. [Gibbs, 1997]
- If, w(Δ(·)) ~ GP(0, k), for a warping function w(·), we obtain a deep non-stationary model.
 [Paciorek & Schervish, 2013; Salimbeni & Deisenroth, 2017b]

Kernel construction

• We choose a hybrid approach:

$$k(W(a) \cdot a, W(b) \cdot b)$$

- Defines a latent space $\tau(x) = W(x) \cdot x$.
- Induces a lengthscale field, $\Delta(x) = [W(x)W(x)^T]^{-1}$

Variational inference

 As a deep GP, inference must be approximate; Extending the approach of Titsias & Lázaro-Gredilla (2013), our variational distribution for a two-layer model is:

$$p(f \mid u) \mathcal{N}(u \mid \mu_{u}, \Sigma_{u}) \prod_{q,d}^{Q,D} p(w_{qd} \mid v_{qd}) \mathcal{N}\left(v_{qd} \mid \mu_{v_{qd}}, \Sigma_{v_{qd}}\right)$$

Variational inference

 As a deep GP, inference must be approximate; Extending the approach of Titsias & Lázaro-Gredilla (2013), our variational distribution for a two-layer model is:

$$p(f \mid u) \mathcal{N}(u \mid \mu_{u}, \Sigma_{u}) \prod_{q,d}^{Q,D} p(w_{qd} \mid v_{qd}) \mathcal{N}\left(v_{qd} \mid \mu_{v_{qd}}, \Sigma_{v_{qd}}\right)$$

• Additionally, to compute the ELBO, the Ψ -statistics need to be computed:

$$[\mathbf{\Psi}_1]_{ij} = \int k \big(\mathbf{W}(\mathbf{x}_i) \cdot \mathbf{x}_i, \mathbf{z}_j \big) q(\mathbf{W}) \, \mathrm{d}\mathbf{W}$$

Variational inference

 As a deep GP, inference must be approximate; Extending the approach of Titsias & Lázaro-Gredilla (2013), our variational distribution for a two-layer model is:

$$p(f \mid u) \mathcal{N}(u \mid \mu_{u}, \Sigma_{u}) \prod_{q,d}^{Q,D} p(w_{qd} \mid v_{qd}) \mathcal{N}\left(v_{qd} \mid \mu_{v_{qd}}, \Sigma_{v_{qd}}\right)$$

• Additionally, to compute the ELBO, the Ψ -statistics need to be computed:

$$[\mathbf{\Psi}_1]_{ij} = \int k \big(\mathbf{W}(\mathbf{x}_i) \cdot \mathbf{x}_i, \mathbf{z}_j \big) q(\mathbf{W}) \, \mathrm{d}\mathbf{W}$$

So, we restrict k(a, b) to the squared exponential kernel and obtain closed form solutions to Ψ -statistics.

Variational inference

 As a deep GP, inference must be approximate; Extending the approach of Titsias & Lázaro-Gredilla (2013), our variational distribution for a two-layer model is:

$$p(f \mid u) \mathcal{N}(u \mid \mu_{u}, \Sigma_{u}) \prod_{q,d}^{Q,D} p(w_{qd} \mid v_{qd}) \mathcal{N}\left(v_{qd} \mid \mu_{v_{qd}}, \Sigma_{v_{qd}}\right)$$

• Additionally, to compute the ELBO, the Ψ -statistics need to be computed:

$$[\Psi_1]_{ij} = \int k \big(\boldsymbol{W}(\boldsymbol{x}_i) \cdot \boldsymbol{x}_i, \boldsymbol{z}_j \big) q(\boldsymbol{W}) \, \mathrm{d} \boldsymbol{W}$$

So, we restrict k(a, b) to the squared exponential kernel and obtain closed form solutions to Ψ -statistics.

• As an alternative, doubly stochastic inference doesn't require these assumptions.

 As a case-study, we also apply TDGP to the GEBCO gridded bathymetry dataset. It contains a global terrain model (elevation data) for ocean and land.

- As a case-study, we also apply TDGP to the GEBCO gridded bathymetry dataset. It contains a global terrain model (elevation data) for ocean and land.
- As an example of a non-stationary task, we selected an especially challenging subset of the data covering the Andes mountain range, ocean, and land.

- As a case-study, we also apply TDGP to the GEBCO gridded bathymetry dataset. It contains a global terrain model (elevation data) for ocean and land.
- As an example of a non-stationary task, we selected an especially challenging subset of the data covering the Andes mountain range, ocean, and land.

- As a case-study, we also apply TDGP to the GEBCO gridded bathymetry dataset. It contains a global terrain model (elevation data) for ocean and land.
- As an example of a non-stationary task, we selected an especially challenging subset of the data covering the Andes mountain range, ocean, and land.
- This region was subsampled to 1,000 points from this region and compared with the methods via five-fold crossvalidation.

- As a case-study, we also apply TDGP to the GEBCO gridded bathymetry dataset. It contains a global terrain model (elevation data) for ocean and land.
- As an example of a non-stationary task, we selected an especially challenging subset of the data covering the Andes mountain range, ocean, and land.
- This region was subsampled to 1,000 points from this region and compared with the methods via five-fold crossvalidation.
- We compare our method against popular inference methods of the previous alternatives.

Results

Results – Bathymetry (m)

Results – Lengthscale field $[tr\Delta(x)]$

Results – Latent space $[\boldsymbol{\tau}(\mathbf{x})]$

Results – Test metrics

	NLPD	MRAE
Sparse GP	-0.13 ± 0.09	1.19 ± 0.63
Deep Kernel Learning	3.85 ± 0.92	0.59 ± 0.31
Compositional DGP	-0.44 ± 0.12	0.83 ± 0.56
Deeply Nonstationary GP	-0.31 ± 0.12	1.12 ± 0.75
TDGP (Ours)	-0.53 ± 0.10	0.66 ± 0.43

References

- Gibbs, Mark N.
 "Bayesian Gaussian Processes for Regression and Classification" (1997)
- Paciorek, Christopher J. & Schervish, Mark J.
 "Nonstationary Covariance Functions for Gaussian Process Regression" (2003)
- Titsias, Michalis K.
 "Variational Learning of Inducing Variables in Sparse Gaussian Processes" (2009)
- 4. Damianou, Andreas C. & Lawrence, Neil D. "Deep Gaussian Processes" (2013)
- 5. Titsias, Michalis K. & Lázaro-Gredilla, Miguel. "Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression" (2013)
- 6. Wilson, Andrew Gordon & Zhiting Hu & Ruslan Salakhutdinov & Eric P. Xing. "Stochastic Variational Deep Kernel Learning" (2016)
- 7. Salimbeni, Hugh & Deisenroth, Marc Peter.
 "Doubly Stochastic Variational Inference for Deep Gaussian Processes" (2017a)
- Salimbeni, Hugh & Deisenroth, Marc Peter.
 "Deeply Non-Stationary Gaussian Processes" (2017b)

Thank you!